1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Serhud [2]
3 years ago
7

Multiply the complex numbers: (1∕2 + 4i)2

Mathematics
2 answers:
rjkz [21]3 years ago
8 0

<em>[</em><em>I'm</em><em> </em><em>supposing</em><em> </em><em>that</em><em> </em><em>you</em><em> </em><em>have</em><em> </em><em>to</em><em> </em><em>find</em><em> </em><em>the</em><em> </em><em>value</em><em> </em><em>of</em><em> </em><em>(</em><em>1</em><em>/</em><em> </em><em>2</em><em> </em><em>+</em><em> </em><em>4i</em><em>)</em><em>²</em><em>]</em><em> </em>

Answer:

=  \frac{ - 63}{4}  + 4i

Step-by-step explanation:

we must know that

  • <em>(a + b)² = a² + b² + 2ab </em>

{( \frac{1}{2} + 4i) }^{2}  =  { (\frac{1}{2} })^{2}  +  {(4i)}^{2}  + 2 .  \frac{1}{2}   . 4i

=  \frac{1}{4}  + 16 {i}^{2}  + 4i

  • since i²= -1

= \frac{1}{4}  - 16 + 4i

=  \frac{1 - 64}{4}  + 4i

= \underline{ \frac{ - 63}{4}  + 4i}

<em>[I'm also assuming that instead of -153/4 + 4i option A says -63/ 4 + 4i.]</em>

so the answer is<u> option A.</u>

andrezito [222]3 years ago
3 0

Step-by-step explanation:

153∕4 + 8i is the correct answer

You might be interested in
Write the quadratic equation whose roots are 4 and 5, and whose leading coefficient is 4.
Umnica [9.8K]

Answer:

<u>Answer</u><u>:</u><u> </u><u>4</u><u>x</u><u>²</u><u> </u><u>-</u><u> </u><u>9</u><u>x</u><u> </u><u>+</u><u> </u><u>2</u><u>0</u><u> </u>

Step-by-step explanation:

• General quadratic equation:

{ \rm{ {x}^{2}  - (sum \: of \: roots)x + (product \: of \: roots) }}

• sum of roots → 4 + 5 = 9

• product of roots → 4 × 5 = 20

• substitute:

{ \boxed{ \rm{4 {x}^{2}  - 9x + 20 }}}

3 0
3 years ago
A ball is thrown from an initial height of 2 meters with an initial upward velocity of 9/ms . The ball's height h (in meters) af
Alecsey [184]

A ball is thrown from an initial height of 2 meters with an initial upward velocity of 9/ms

Balls height h= 2 +9t -5t^2

To find all values of t for which the ball's height is 3 meters

We plug in 3 for h and solve for t

h= 2 +9t -5t^2

3 = 2 +9t -5t^2

Solve for t

0= -1+ 9t -5t^2

5t^2 - 9t + 1 = 0

Solve using quadratic formula

t= \frac{-b+- \sqrt{b^2-4ac} }{2a}

t= \frac{9+- \sqrt{(-9)^2-4*5*1} }{2*5}

After simplifying this,

t= \frac{9+\sqrt{61}}{10} = 0.11898

t= \frac{9-\sqrt{61}}{10} = 1.68102

the values of t for which the ball's height is 3 meters= 0.12 sec , 1.68 sec

5 0
3 years ago
1.Find the dot product of the two given vectors, u=(1,6) and v=(-5,-2) 2. Find the dot product of v=-7i+4j and w=-6i+5j
Svet_ta [14]
The dot product of the two vectors will be given as follows:
v*w=(-7i+4j)*(-6i+5j)
=(-7*(-6))i+(4*5)j
=-42i+20j

Hence the answer is:
v*w=(-42i+20j)
8 0
3 years ago
Read 2 more answers
What is the volume of the cube shown?<br> 112 in<br> 30 in<br> 6<br> in<br> 2<br> in
Elenna [48]

Answer:

11 \frac{25}{64}

<h3>First answer is correct</h3>

Step-by-step explanation:

2 \frac{1}{4}  \times 2 \frac{1}{4}  \times 2 \frac{1}{4}  \\  \frac{9}{4}  \times  \frac{9}{4}  \times  \frac{9}{4}  \\  =  \frac{729}{64}   \\ = 11 \frac{25}{64} \:  \:  \:   {in}^{3}

7 0
3 years ago
9 &lt; 11, so 9(5) &lt; 11(5) true or false?
Zolol [24]
It is true since you’re multiplying the same number on both the sides
7 0
3 years ago
Other questions:
  • You deposit $2000 in an account earning 4% interest compounded continuously. How much money will you
    11·1 answer
  • (3/2)^2 + 4 ÷ 2 x 3<br> Please help!!! Thank you :)
    12·1 answer
  • - b = 14.89, C = 77°, c = 17.11
    10·1 answer
  • Work out the shaded area​
    14·1 answer
  • A research company desires to know the mean consumption of milk per week among males over age 45. They believe that the milk con
    8·1 answer
  • What is the equation, in slope-intercept form, of the perpendicular bisector of the given line segment?
    9·2 answers
  • Select all possible solutions for 2x + 7 &lt; 3x - 5.
    12·1 answer
  • 7.<br> Find the value of x. Round the length to the nearest tenth.<br> х<br> 40°<br> 11 cm
    8·1 answer
  • Please I could use some help!
    11·1 answer
  • Find the domain and range of each relation. Then determine if the relation is a function. (5,0),(6,-2),(7,10),(8,-3)
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!