Answer:
(0.30, 0.42)
Step-by-step explanation:
Given the sample proportion is = 0.36
Number of trials required for determining the margin of the error = 100
Sample size, n = 50
The point estimate = 0.36
The minimum sample proportion form the simulation = 0.28
The maximum sample proportion from the simulation = 0.40
Also the margin of the error of population proportion is found by using the half of the range.
Therefore, the interval estimate for the true population proportion is = (0.30, 0.42)
5,000+400+80+4+.3+.06+.006
Answer:
1) 3, 4
2) . 1, 2, 3, 4, 5, 6
3) 5, 6
4) . 1, 2, 5, 6
Step-by-step explanation:
Equivalent expressions are expressions that have the same value, and can be used interchangeably.
The result of the sum
is ![4x\sqrt[3]{2y} + 8x^2y\sqrt[3]{2y^2})](https://tex.z-dn.net/?f=4x%5Csqrt%5B3%5D%7B2y%7D%20%20%2B%208x%5E2y%5Csqrt%5B3%5D%7B2y%5E2%7D%29)
The expression is given as:
![2 (\sqrt[3]{16x^3y}) + 4 (\sqrt[3]{54x^6y^5})](https://tex.z-dn.net/?f=2%20%28%5Csqrt%5B3%5D%7B16x%5E3y%7D%29%20%20%2B%204%20%28%5Csqrt%5B3%5D%7B54x%5E6y%5E5%7D%29)
Rewrite the expression as:
![2 (\sqrt[3]{16x^3y}) + 4 (\sqrt[3]{54x^6y^5}) = 2 (\sqrt[3]{2^4x^3y}) + 4 (\sqrt[3]{3^3 \times 2x^6y^5})](https://tex.z-dn.net/?f=2%20%28%5Csqrt%5B3%5D%7B16x%5E3y%7D%29%20%20%2B%204%20%28%5Csqrt%5B3%5D%7B54x%5E6y%5E5%7D%29%20%3D%202%20%28%5Csqrt%5B3%5D%7B2%5E4x%5E3y%7D%29%20%20%2B%204%20%28%5Csqrt%5B3%5D%7B3%5E3%20%5Ctimes%202x%5E6y%5E5%7D%29)
Evaluate the roots
![2 (\sqrt[3]{16x^3y}) + 4 (\sqrt[3]{54x^6y^5}) = 2 (2x\sqrt[3]{2y}) + 4 (3x^2y\sqrt[3]{2y^2})](https://tex.z-dn.net/?f=2%20%28%5Csqrt%5B3%5D%7B16x%5E3y%7D%29%20%20%2B%204%20%28%5Csqrt%5B3%5D%7B54x%5E6y%5E5%7D%29%20%3D%202%20%282x%5Csqrt%5B3%5D%7B2y%7D%29%20%20%2B%204%20%283x%5E2y%5Csqrt%5B3%5D%7B2y%5E2%7D%29)
Open the brackets
![2 (\sqrt[3]{16x^3y}) + 4 (\sqrt[3]{54x^6y^5}) = 4x\sqrt[3]{2y} + 12x^2y\sqrt[3]{2y^2})](https://tex.z-dn.net/?f=2%20%28%5Csqrt%5B3%5D%7B16x%5E3y%7D%29%20%20%2B%204%20%28%5Csqrt%5B3%5D%7B54x%5E6y%5E5%7D%29%20%3D%204x%5Csqrt%5B3%5D%7B2y%7D%20%20%2B%2012x%5E2y%5Csqrt%5B3%5D%7B2y%5E2%7D%29)
The above expression cannot be further simplified.
Hence, the result of the sum
is ![4x\sqrt[3]{2y} + 8x^2y\sqrt[3]{2y^2})](https://tex.z-dn.net/?f=4x%5Csqrt%5B3%5D%7B2y%7D%20%20%2B%208x%5E2y%5Csqrt%5B3%5D%7B2y%5E2%7D%29)
Read more about equivalent expressions at:
brainly.com/question/2972832