The possible zeros of f(x) = 3x^6 + 4x^3 -2x^2 + 4 are 
<h3>How to determine the possible zeros?</h3>
The function is given as:
f(x) = 3x^6 + 4x^3 -2x^2 + 4
The leading coefficient of the function is:
p = 3
The constant term is
q = 4
Take the factors of the above terms
p = 1 and 3
q = 1, 2 and 4
The possible zeros are then calculated as:

So, we have:

Expand

Solve

Hence, the possible zeros of f(x) = 3x^6 + 4x^3 -2x^2 + 4 are 
Read more about rational root theorem at:
brainly.com/question/9353378
#SPJ1
Answer:
8 months
Step-by-step explanation:
if you can get 120 per month then 950/120 = ~8
Answer:
p = 2
Step-by-step explanation:
First, simplify:
3p = 6
Then, divide 3 on both sides:
p = 2
Hope this helps ^^