Answer:
It will double in the year 2063
Step-by-step explanation:
Let the amount deposited be $x, when it doubles, the amount becomes $2x
we can use the compound interest formula to know when this will happen
The compound interest formula is as follows;
A = P(1+r/n)^nt
In this question,
A is the amount which is 2 times the principal and this is $2x
P is called the principal and it is the amount deposited which is $x
r is the interest rate which is 3.2% = 3.2/100 = 0.032
n is the number of times compounding takes place per year which is quarterly which equals to 4
t is the number of years which we want to calculate.
Substituting all these into the equation, we have;
2x = x(1+0.032/4)^4t
divide through by x
2 = (1+ 0.008)^4t
2 = (1.008)^4t
we use logarithm here
Take log of both sides
log 2 = log (1.008)^2t
log 2 = 2t log 1.008
2t = log 2/log 1.008
2t = 86.98
t = 86.98/2
t =43.49 which is 43 years approximately
Thus the year the money will double will be 2020 + 43 years = 2063
Answer:
1. After solving we get value of x: 
2. After solving we get value of x: 
Step-by-step explanation:
We need to Solve the equations.
1. 
Step 1: Subtract 5x on both sides

Step 2: Subtract 10 on both sides

Step 3: Divide both sides by -11

So, after solving we get value of x: 
2. 
Step 1: Subtract 5x on both sides

Step 2: Subtract 7 on both sides

Step 3: Divide both sides by -11

So, after solving we get value of x: 
Answer:
160km^2
Step-by-step explanation:
The answer is <span><span>579/100 i am pretty sure</span>
</span>
Answer:
The prove is as given below
Step-by-step explanation:
Suppose there are only finitely many primes of the form 4k + 3, say {p1, . . . , pk}. Let P denote their product.
Suppose k is even. Then P ≅ 3^k (mod 4) = 9^k/2 (mod 4) = 1 (mod 4).
ThenP + 2 ≅3 (mod 4), has to have a prime factor of the form 4k + 3. But pₓ≠P + 2 for all 1 ≤ i ≤ k as pₓ| P and pₓ≠2. This is a contradiction.
Suppose k is odd. Then P ≅ 3^k (mod 4) = 9^k/2 (mod 4) = 1 (mod 4).
Then P + 4 ≅3 (mod 4), has to have a prime factor of the form 4k + 3. But pₓ≠P + 4 for all 1 ≤ i ≤ k as pₓ| P and pₓ≠4. This is a contradiction.
So this indicates that there are infinite prime numbers of the form 4k+3.