Answer:
570 Mr.Monkay :D
Step-by-step explanation:
Answer:
L = ∫₀²ᵖⁱ √((1 − sin t)² + (1 − cos t)²) dt
Step-by-step explanation:
Arc length of a parametric curve is:
L = ∫ₐᵇ √((dx/dt)² + (dy/dt)²) dt
x = t + cos t, dx/dt = 1 − sin t
y = t − sin t, dy/dt = 1 − cos t
L = ∫₀²ᵖⁱ √((1 − sin t)² + (1 − cos t)²) dt
Or, if you wish to simplify:
L = ∫₀²ᵖⁱ √(1 − 2 sin t + sin²t + 1 − 2 cos t + cos²t) dt
L = ∫₀²ᵖⁱ √(3 − 2 sin t − 2 cos t) dt