Answer:
Mate choice, competition, and the variety of resources available are the key factors.
Explanation:
Answer:
c. Major groove
Explanation:
The interaction surfaces of proteins are, in general, varied. From the point of view of the secondary structure, the surfaces of the proteins are formed by the surfaces of their α helices, β sheets and loops that conform them. The surfaces of the DNA molecules are less varied: the B-DNA helix has a monotonous “screw” shaped surface with phosphoribose ridges between which two grooves (major and minor) are formed. The difference between different nucleotide sequences can only be seen from outside in the major groove, where the bases appear. The surfaces of RNA molecules that possess tertiary structure (such as t-RNA) are almost as complex as that of proteins.
Since the major groove is the only site where the bases are accessible from outside the B-DNA without distorting it, the major groove constitutes the main recognition site. As the interaction between molecules is stronger if their surfaces are complementary, the protein-DNA interaction usually occurs by filling the major groove.
Its called <span>Aortic Arches. Once the earthworm ingests their food it goes straight through their </span>digestive<span> tract which goes down the </span>esophagus<span> then through the crop and gizzard.</span>
Answer:
The 5' end has free phosphate group while the 3' end has free OH group.
Explanation:
Each DNA strand has two ends that differ from each other with respect to the functional group. The nucleotide present at the 5' end of a DNA strand has a free phosphate group. This phosphate group of other nucleotides of the DNA strand is bonded in phosphodiester bonds. Likewise, the 3' end of a DNA has a free OH group. This makes the two ends of a DNA strand quite different from each other. A DNA new nucleotide can be added to the 3' end due to the presence of a free OH group.
The correct answer of the given question above would be ROBERT HOOKE. It was Robert Hooke, who coined the term "cell" in reference to the tiny structures seen in living organisms. His book "Micrographia" is the most important achievement that he has.