Answer:
The prime factorization of the number 24 is 2 × 2 × 2 × 3.
That's very interesting. I had never thought about it before.
Let's look through all of the ten possible digits in that place,
and see what we can tell:
-- 0:
A number greater than 10 with a 0 in the units place is a multiple of
either 5 or 10, so it's not a prime number.
-- 1:
A number greater than 10 with a 1 in the units place could be
a prime (11, 31 etc.) but it doesn't have to be (21, 51).
-- 2:
A number greater than 10 with a 2 in the units place has 2 as a factor
(it's an even number), so it's not a prime number.
-- 3:
A number greater than 10 with a 3 in the units place could be
a prime (13, 23 etc.) but it doesn't have to be (33, 63) .
-- 4:
A number greater than 10 with a 4 in the units place is an even
number, and has 2 as a factor, so it's not a prime number.
-- 5:
A number greater than 10 with a 5 in the units place is a multiple
of either 5 or 10, so it's not a prime number.
-- 6:
A number greater than 10 with a 6 in the units place is an even
number, and has 2 as a factor, so it's not a prime number.
-- 7:
A number greater than 10 with a 7 in the units place could be
a prime (17, 37 etc.) but it doesn't have to be (27, 57) .
-- 8:
A number greater than 10 with a 8 in the units place is an even
number, and has 2 as a factor, so it's not a prime number.
-- 9:
A number greater than 10 with a 9 in the units place could be
a prime (19, 29 etc.) but it doesn't have to be (39, 69) .
So a number greater than 10 that IS a prime number COULD have
any of the digits 1, 3, 7, or 9 in its units place.
It CAN't have a 0, 2, 4, 5, 6, or 8 .
The only choice that includes all of the possibilities is 'A' .
The 84th day since the greatest common multiple is 84.
Answer: x=14
Step-by-step explanation: have a good day
The function will exist on all real numbers. Hence the domain of the exponential function given is all real numbers
<h3>Domain of a function</h3>
The domain are independent values of an expression for which it exist. The standard exponential equation is expressed as y = ab^x
Given the exponential function as shown:
y = 5(3)^x
The function will exist on all real numbers. Hence the domain of the exponential function given is all real numbers
Learn more on domain here: brainly.com/question/26098895
#SPJ1