Answer:
![(-1,1),(4,-2)](https://tex.z-dn.net/?f=%28-1%2C1%29%2C%284%2C-2%29)
Step-by-step explanation:
Given: The hypotenuse of a right triangle has endpoints A(4, 1) and B(–1, –2).
To find: coordinates of vertex of the right angle
Solution:
Let C be point ![(x,y)](https://tex.z-dn.net/?f=%28x%2Cy%29)
Distance between points
is given by ![\sqrt{(x_2-x_1)^2+(y_2-y_1)^2}](https://tex.z-dn.net/?f=%5Csqrt%7B%28x_2-x_1%29%5E2%2B%28y_2-y_1%29%5E2%7D)
![AC=\sqrt{(x-4)^2+(y-1)^2}\\BC=\sqrt{(x+1)^2+(y+2)^2}\\AB=\sqrt{(4+1)^2+(1+2)^2}=\sqrt{25+9}=\sqrt{34}](https://tex.z-dn.net/?f=AC%3D%5Csqrt%7B%28x-4%29%5E2%2B%28y-1%29%5E2%7D%5C%5CBC%3D%5Csqrt%7B%28x%2B1%29%5E2%2B%28y%2B2%29%5E2%7D%5C%5CAB%3D%5Csqrt%7B%284%2B1%29%5E2%2B%281%2B2%29%5E2%7D%3D%5Csqrt%7B25%2B9%7D%3D%5Csqrt%7B34%7D)
ΔABC is a right angled triangle, suing Pythagoras theorem (square of hypotenuse is equal to sum of squares of base and perpendicular)
![34=\left [ (x-4)^2+(y-1)^2 \right ]+\left [ (x+1)^2+(y+2)^2 \right ]](https://tex.z-dn.net/?f=34%3D%5Cleft%20%5B%20%28x-4%29%5E2%2B%28y-1%29%5E2%20%5Cright%20%5D%2B%5Cleft%20%5B%20%28x%2B1%29%5E2%2B%28y%2B2%29%5E2%20%5Cright%20%5D)
Put ![(x,y)=(-1,1)](https://tex.z-dn.net/?f=%28x%2Cy%29%3D%28-1%2C1%29)
![34=\left [ (-1-4)^2+(1-1)^2 \right ]+\left [ (-1+1)^2+(1+2)^2 \right ]\\34=25+9\\34=34](https://tex.z-dn.net/?f=34%3D%5Cleft%20%5B%20%28-1-4%29%5E2%2B%281-1%29%5E2%20%5Cright%20%5D%2B%5Cleft%20%5B%20%28-1%2B1%29%5E2%2B%281%2B2%29%5E2%20%5Cright%20%5D%5C%5C34%3D25%2B9%5C%5C34%3D34)
which is true. So,
can be a vertex
Put ![(x,y)=(4,-2)](https://tex.z-dn.net/?f=%28x%2Cy%29%3D%284%2C-2%29)
![34=\left [ (4-4)^2+(-2-1)^2 \right ]+\left [ (4+1)^2+(-2+2)^2 \right ]\\34=9+25\\34=34](https://tex.z-dn.net/?f=34%3D%5Cleft%20%5B%20%284-4%29%5E2%2B%28-2-1%29%5E2%20%5Cright%20%5D%2B%5Cleft%20%5B%20%284%2B1%29%5E2%2B%28-2%2B2%29%5E2%20%5Cright%20%5D%5C%5C34%3D9%2B25%5C%5C34%3D34)
which is true. So,
can be a vertex
Put ![(x,y)=(1,1)](https://tex.z-dn.net/?f=%28x%2Cy%29%3D%281%2C1%29)
![34=\left [ (1-4)^2+(1-1)^2 \right ]+\left [ (1+1)^2+(1+2)^2 \right ]\\34=9+4+9\\34=22](https://tex.z-dn.net/?f=34%3D%5Cleft%20%5B%20%281-4%29%5E2%2B%281-1%29%5E2%20%5Cright%20%5D%2B%5Cleft%20%5B%20%281%2B1%29%5E2%2B%281%2B2%29%5E2%20%5Cright%20%5D%5C%5C34%3D9%2B4%2B9%5C%5C34%3D22)
which is not true. So,
cannot be a vertex
Put ![(x,y)=(2,-2)](https://tex.z-dn.net/?f=%28x%2Cy%29%3D%282%2C-2%29)
![34=\left [ (2-4)^2+(-2-1)^2 \right ]+\left [ (2+1)^2+(-2+2)^2 \right ]\\34=4+9+9\\34=22](https://tex.z-dn.net/?f=34%3D%5Cleft%20%5B%20%282-4%29%5E2%2B%28-2-1%29%5E2%20%5Cright%20%5D%2B%5Cleft%20%5B%20%282%2B1%29%5E2%2B%28-2%2B2%29%5E2%20%5Cright%20%5D%5C%5C34%3D4%2B9%2B9%5C%5C34%3D22)
which is not true. So,
cannot be a vertex
Put ![(x,y)=(4,-1)](https://tex.z-dn.net/?f=%28x%2Cy%29%3D%284%2C-1%29)
![34=\left [ (4-4)^2+(-1-1)^2 \right ]+\left [ (4+1)^2+(-1+2)^2 \right ]\\34=4+25+1\\34=30](https://tex.z-dn.net/?f=34%3D%5Cleft%20%5B%20%284-4%29%5E2%2B%28-1-1%29%5E2%20%5Cright%20%5D%2B%5Cleft%20%5B%20%284%2B1%29%5E2%2B%28-1%2B2%29%5E2%20%5Cright%20%5D%5C%5C34%3D4%2B25%2B1%5C%5C34%3D30)
which is not true. So,
cannot be a vertex
Put ![(x,y)=(-1,4)](https://tex.z-dn.net/?f=%28x%2Cy%29%3D%28-1%2C4%29)
![34=\left [ (-1-4)^2+(4-1)^2 \right ]+\left [ (-1+1)^2+(4+2)^2 \right ]\\34=25+9+36\\34=70](https://tex.z-dn.net/?f=34%3D%5Cleft%20%5B%20%28-1-4%29%5E2%2B%284-1%29%5E2%20%5Cright%20%5D%2B%5Cleft%20%5B%20%28-1%2B1%29%5E2%2B%284%2B2%29%5E2%20%5Cright%20%5D%5C%5C34%3D25%2B9%2B36%5C%5C34%3D70)
which is not true. So,
cannot be a vertex
So, possible points for the vertex are ![(-1,1),(4,-2)](https://tex.z-dn.net/?f=%28-1%2C1%29%2C%284%2C-2%29)