Answer:
The answer is D.............
Step-by-step explanation:
Y - y1 = [-9-(-5)]/[(9-10] * (x - x1)
y - (-9) = [-9 + 5] / [-1] * (x - 9)
y + 9 = (-4) / (-1) * (x - 9)
y + 9 = 4(x - 9)
y + 9 = 4x - 36
y = 4x - 36 - 9
y = 4x - 45 This is the slope - intercept form.
y - 4x + 45 = 0 This is the standard form
Answer:
a solution is 1/2 *tan⁻¹ (2*y) = - tan⁻¹ (x²) + π/4
Step-by-step explanation:
for the equation
(1 + x⁴) dy + x*(1 + 4y²) dx = 0
(1 + x⁴) dy = - x*(1 + 4y²) dx
[1/(1 + 4y²)] dy = [-x/(1 + x⁴)] dx
∫[1/(1 + 4y²)] dy = ∫[-x/(1 + x⁴)] dx
now to solve each integral
I₁= ∫[1/(1 + 4y²)] dy = 1/2 *tan⁻¹ (2*y) + C₁
I₂= ∫[-x/(1 + x⁴)] dx
for u= x² → du=x*dx
I₂= ∫[-x/(1 + x⁴)] dx = -∫[1/(1 + u² )] du = - tan⁻¹ (u) +C₂ = - tan⁻¹ (x²) +C₂
then
1/2 *tan⁻¹ (2*y) = - tan⁻¹ (x²) +C
for y(x=1) = 0
1/2 *tan⁻¹ (2*0) = - tan⁻¹ (1²) +C
since tan⁻¹ (1²) for π/4+ π*N and tan⁻¹ (0) for π*N , we will choose for simplicity N=0 . hen an explicit solution would be
1/2 * 0 = - π/4 + C
C= π/4
therefore
1/2 *tan⁻¹ (2*y) = - tan⁻¹ (x²) + π/4