Answer:
1.)
Step-by-step explanation:
When driving downwards, that is negative because you are subtracting. Then, when driving upwards, you are adding.
You want to find the monthly average over the past 6 months.
July: $78.56
August: $30.21
September: $81.20
October: $79.08
November: $66.18
December: $100.75
Add all of these up
(July) $78.56
(August) $30.21
(September) $81.20
(October) $79.08
(November) $66.18
(December) + $100.75
----------------------------------------------
(Total cost) $435.88
There are 6 months you are calculating for, therefore divide the total (combined) cost of 6 months with the total number of months (in this case, 6)
$435.88 (total cost of 6 months) ÷ 6 (months)
The average cost per month of over the past 6 months is $72.66.
(3x+4) (2x-6)
6x-18x+4x-24
6x^{2} -14-24
Answer:
a) For the first part we have a sample of n =10 and we want to find the degrees of freedom, and we can use the following formula:

d.9
b) 
a.15
c) For this case we have the sample size n = 25 and the sample variance is
, the standard error can founded with this formula:

Step-by-step explanation:
Part a
For the first part we have a sample of n =10 and we want to find the degrees of freedom, and we can use the following formula:

d.9
Part b
From a sample we know that n=41 and SS= 600, where SS represent the sum of quares given by:

And the sample variance for this case can be calculated from this formula:

a.15
Part c
For this case we have the sample size n = 25 and the sample variance is
, the standard error can founded with this formula:

Answer:
no because a decimal occurs
Step-by-step explanation:
445,760/6 = 74293.3333333