The length of a curve <em>C</em> parameterized by a vector function <em>r</em><em>(t)</em> = <em>x(t)</em> i + <em>y(t)</em> j over an interval <em>a</em> ≤ <em>t</em> ≤ <em>b</em> is

In this case, we have
<em>x(t)</em> = exp(<em>t</em> ) + exp(-<em>t</em> ) ==> d<em>x</em>/d<em>t</em> = exp(<em>t</em> ) - exp(-<em>t</em> )
<em>y(t)</em> = 5 - 2<em>t</em> ==> d<em>y</em>/d<em>t</em> = -2
and [<em>a</em>, <em>b</em>] = [0, 2]. The length of the curve is then





What question do u need help with?
11=27
12=27
13=4
14=16
15=24
16=?
sorry I couldn't solve them all, hope that helped :D
Answer:
-5
Step-by-step explanation:
or, f(x) = -x^2+10x+16
or, f(7) = (-7)^2+10*-7+16 (-7*-7=49)
=49-70+16
=65-70
=-5