Answer:
250
Step-by-step explanation:
85% · n = 212.5
[convert 85% to .85]
.85n = 212.5
n = 212.5/.85
n = 250
Using Laplace transform we have:L(x')+7L(x) = 5L(cos(2t))sL(x)-x(0) + 7L(x) = 5s/(s^2+4)(s+7)L(x)- 4 = 5s/(s^2+4)(s+7)L(x) = (5s - 4s^2 -16)/(s^2+4)
=> L(x) = -(4s^2 - 5s +16)/(s^2+4)(s+7)
now the boring part, using partial fractions we separate 1/(s^2+4)(s+7) that is:(7-s)/[53(s^2+4)] + 1/53(s+7). So:
L(x)= (1/53)[(-28s^2+4s^3-4s^2+35s-5s^2+5s)/(s^2+4) + (-4s^2+5s-16)/(s+7)]L(x)= (1/53)[(4s^3 -37s^2 +40s)/(s^2+4) + (-4s^2+5s-16)/(s+7)]
denoting T:= L^(-1)and x= (4/53) T(s^3/(s^2+4)) - (37/53)T(s^2/(s^2+4)) +(40/53) T(s^2+4)-(4/53) T(s^2/s+7) +(5/53)T(s/s+7) - (16/53) T(1/s+7)
To find the vertex use -b/2a (for the x value which is also the axis of symmetry)
So 2/-2 = -1 Therefore the axis of symmetry is x=-1 Plug in for the y value:
y= -(-1)^2 -2(-1) + 1 y=-1 + 2 + 1 y=2 Vertex (-1,2)
Answer:
m < DBC = 51
Step-by-step explanation:
Looking at the picture, we know <ABD and <DBC make up <ABC. Knowing this, we can set up an equation like so, plug in the known values, and solve to find m<DBC:
