A
(-2c-3d) (- 11) (- 2c-3d) (- 11) left parenthesis, minus, 2, c, minus, 3, d, right parenthesis, left parenthesis, minus, 11, right parenthesis
C
(66c + 99d) \ cdot \ dfrac {1} {3} (66c + 99d) ⋅ 3
1 left parenthesis, 66, c, plus, 99, d, right parenthesis, dot, start fraction, 1, divided by, 3, end fraction
<span> E
11\cdot(2c+3d)11⋅(2c+3d)11, dot, left parenthesis, 2, c, plus, 3, d, right parenthesis
</span> answer
(-2c-3d) (- 11) = 22c + 33d
(66c + 99d) * 1/3 = 22c + 33d
11 * ( 2c+3d) = 22c + 33d
(x + 1/x)² = 3 | √
<u>x + 1/x</u> = √3
According to short multiplication formula:
(a + b)³ =a³ + 3a²b + 3ab² + b³
x³ + 1/x³ = (x)³ + (1/x)³ = (x + 1/x)³ - 3x²/x - 3x/x² =
= (x + 1/x)³ - 3x - 3/x = (<u>x + 1/x</u>)³ - 3(<u>x + 1/x</u>) =
= (√3)³ - 3√3 = 3√3 - 3√3 = 0
If (x + 1/x)² = 3 the value of x³ + 1/x³ is 0.
A is the answer to your question
3x+8x-12=8x+1
11x-12=8x+1
3x=13
X=13/3.