I assume the equation described is:
( x + 6 ) / ( x^2 - 64 )
You can compare the degree of the numerator and denominator in a function that takes the form of this type of rational equation.
Here are the three rules
#1 (Correct Answer): When the degree of the numerator is smaller then the denominator the horizontal asymptote is y = 0
#2 If the degree of the numerator and denominator is the same, then you take the leading coefficient of the numerator (n) and denominator (d) to create the answer y = n / d in this equations case it would be 1 / 1 since variables technically have an invisible 1 in front of them since anything multiplied by 1 is its self, 1x = x
#3 When the degree of the numerator is greater then the degree of the denominator then this means that it does not have a horizontal asymptote.
Again the final answer is that the horizontal asymptote is y = 0
Answer:
graph g(x)=1/4 x^2 - 2
Step-by-step explanation:
You are to replace x with (1/2x) in the expression x^2-2
So you have (1/2x)^2-2
1/4 x^2-2
Graph some points for g(x)=1/4 x^2-2
The vertex is (0,-2) and the parabola is open up.
I would graph 2 more points besides the vertex
x | g(x) ordered pairs to graph
----------- (-1,-1.75) and (0,-2) and (1,-1.75)
-1 -1.75
0 -2
1 -1.75
Answer:
LOLLLLLL EZZ POINTS
░░░░░▐▀█▀▌░░░░▀█▄░░░
░░░░░▐█▄█▌░░░░░░▀█▄░░
░░░░░░▀▄▀░░░▄▄▄▄▄▀▀░░
░░░░▄▄▄██▀▀▀▀░░░░░░
░░░█▀▄▄▄█░▀▀░░
░░░▌░▄▄▄▐▌▀▀░░ This is Bob
░▐░░░▄▄░█░▀▀ ░░
▀█▌░░░▄░▀█▀░▀ ░░ Copy and paste him so he can take over brainly.
░░░░░░░▀███▀█░▄░░
░░░░░░▐▌▀▄▀▄▀▐▄░░
░░░░░░▐▀░░░░░░▐▌░░
░░░░░░█░░░░░░░░█░Hi
░░░░░▐▀█▀▌░░░░▀█▄░░░
░░░░░▐█▄█▌░░░░░░▀█▄░░
░░░░░░▀▄▀░░░▄▄▄▄▄▀▀░░
░░░░▄▄▄██▀▀▀▀░░░░░░
░░░█▀▄▄▄█░▀▀░░
░░░▌░▄▄▄▐▌▀▀░░ This is Bob
░▐░░░▄▄░█░▀▀ ░░
▀█▌░░░▄░▀█▀░▀ ░░ Copy and paste him so he can take over brainly.
░░░░░░░▀███▀█░▄░░
░░░░░░▐▌▀▄▀▄▀▐▄░░
░░░░░░▐▀░░░░░░▐▌░░
░░░░░░█░░░░░░░░█░Hi
░░░░░▐▀█▀▌░░░░▀█▄░░░
░░░░░▐█▄█▌░░░░░░▀█▄░░
░░░░░░▀▄▀░░░▄▄▄▄▄▀▀░░
░░░░▄▄▄██▀▀▀▀░░░░░░
░░░█▀▄▄▄█░▀▀░░
░░░▌░▄▄▄▐▌▀▀░░ This is Bob
░▐░░░▄▄░█░▀▀ ░░
▀█▌░░░▄░▀█▀░▀ ░░ Copy and paste him so he can take over brainly.
░░░░░░░▀███▀█░▄░░
░░░░░░▐▌▀▄▀▄▀▐▄░░
░░░░░░▐▀░░░░░░▐▌░░
░░░░░░█░░░░░░░░█░
Step-by-step explanation:
ZnzhanshHi
░░░░░▐▀█▀▌░░░░▀█▄░░░
░░░░░▐█▄█▌░░░░░░▀█▄░░
░░░░░░▀▄▀░░░▄▄▄▄▄▀▀░░
░░░░▄▄▄██▀▀▀▀░░░░░░
░░░█▀▄▄▄█░▀▀░░
░░░▌░▄▄▄▐▌▀▀░░ This is Bob
░▐░░░▄▄░█░▀▀ ░░
▀█▌░░░▄░▀█▀░▀ ░░ Copy and paste him so he can take over brainly.
░░░░░░░▀███▀█░▄░░
░░░░░░▐▌▀▄▀▄▀▐▄░░
░░░░░░▐▀░░░░░░▐▌░░
░░░░░░█░░░░░░░░█░
By the angle difference formula for sines, we have:

By the angle sum formula for tangents, we have:

.
Rationalizing the denominator gives

as the final answer.