1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
netineya [11]
3 years ago
11

6) There are many cylinders with a height of 4 inches.

Mathematics
1 answer:
diamong [38]3 years ago
5 0

Answer:

Please check the explanation.

Step-by-step explanation:

Given

height of cylinder h = 4 inches

Given the table

Radius          Volume

1                     ___

2                    ___

3                    ___

Determining the Volume of the cylinder when r = 1 inch and h = 4 inches

Given

h = 4 inches

r = 1 inch

Using the formula to determine the volume of the cylinder

V = πr²h

V = 3.14×(1)²×(4)

V = 3.14 × 1 × 4

V = 12.56

V ≈ 13  (nearst cubic inch)

Therefore, the volume of cylinder when h = 4 inches and r = 1 inch will be:

V ≈ 13 cubic inches (nearest cubic inch)

Determining the Volume of the cylinder when r = 2 inches and h = 4 inches

Given

h = 4 inches

r = 2 inch

Using the formula to determine the volume of the cylinder

V = πr²h

V = 3.14×(2)²×(4)

V = 3.14 × 4 × 4

V = 50.24

V ≈ 50  (nearst cubic inch)

Therefore, the volume of cylinder when h = 4 inches and r = 2 inches will be:

V ≈ 50 cubic inches (nearest cubic inch)

Determining the Volume of the cylinder when r = 3 inches and h = 4 inches

Given

h = 4 inches

r = 3 inch

Using the formula to determine the volume of the cylinder

V = πr²h

V = 3.14×(3)²×(4)

V = 3.14 × 9 × 4

V = 113.04

V ≈ 113  (nearst cubic inch)

Therefore, the volume of cylinder when h = 4 inches and r = 3 inches will be:

V ≈ 113 cubic inches (nearest cubic inch)

Therefore, we complete the table conclude such as:

Radius          Volume

1                     13

2                    50

3                    113

You might be interested in
BRAINLIEST PLS HALP!!
BigorU [14]

Answer:

B

Step-by-step explanation:

Trust me

3 0
3 years ago
Solve the equation by factoring. 2x^2 + 15x + 25 = 0
Pepsi [2]

Answer:(2x+5)(x+5)=0

Step-by-step explanation:

2x^2+15x+25=0

Factorise we have

2x^2+10x+5x+25

(2x^2+10x)+(5x+25)=0

2x(x+5)+5(x+5)=0

(2x+5)(x+5)=0

7 0
3 years ago
Read 2 more answers
*WILL GIVE BRAINLIEST FOR BEST ANSWER*
Leto [7]
The answer is Value equals 1583.36 cubic feet
5 0
2 years ago
1. Derive the half-angle formulas from the double
lilavasa [31]

1) cos (θ / 2) = √[(1 + cos θ) / 2], sin (θ / 2) = √[(1 - cos θ) / 2], tan (θ / 2) = √[(1 - cos θ) / (1 + cos θ)]

2) (x, y) → (r · cos θ, r · sin θ), where r = √(x² + y²).

3) The point (x, y) = (2, 3) is equivalent to the point (r, θ) = (√13, 56.309°). The point (r, θ) = (4, 30°) is equivalent to the point (x, y) = (2√3, 2).

4) The <em>linear</em> function y = 5 · x - 8 is equivalent to the function r = - 8 / (sin θ - 5 · cos θ).

<h3>How to apply trigonometry on deriving formulas and transforming points</h3>

1) The following <em>trigonometric</em> formulae are used to derive the <em>half-angle</em> formulas:

sin² θ / 2 + cos² θ / 2 = 1                      (1)

cos θ = cos² (θ / 2) - sin² (θ / 2)           (2)

First, we derive the formula for the sine of a <em>half</em> angle:

cos θ = 2 · cos² (θ / 2) - 1

cos² (θ / 2) = (1 + cos θ) / 2

cos (θ / 2) = √[(1 + cos θ) / 2]

Second, we derive the formula for the cosine of a <em>half</em> angle:

cos θ = 1 - 2 · sin² (θ / 2)

2 · sin² (θ / 2) = 1 - cos θ

sin² (θ / 2) = (1 - cos θ) / 2

sin (θ / 2) = √[(1 - cos θ) / 2]

Third, we derive the formula for the tangent of a <em>half</em> angle:

tan (θ / 2) = sin (θ / 2) / cos (θ / 2)

tan (θ / 2) = √[(1 - cos θ) / (1 + cos θ)]

2) The formulae for the conversion of coordinates in <em>rectangular</em> form to <em>polar</em> form are obtained by <em>trigonometric</em> functions:

(x, y) → (r · cos θ, r · sin θ), where r = √(x² + y²).

3) Let be the point (x, y) = (2, 3), the coordinates in <em>polar</em> form are:

r = √(2² + 3²)

r = √13

θ = atan(3 / 2)

θ ≈ 56.309°

The point (x, y) = (2, 3) is equivalent to the point (r, θ) = (√13, 56.309°).

Let be the point (r, θ) = (4, 30°), the coordinates in <em>rectangular</em> form are:

(x, y) = (4 · cos 30°, 4 · sin 30°)

(x, y) = (2√3, 2)

The point (r, θ) = (4, 30°) is equivalent to the point (x, y) = (2√3, 2).

4) Let be the <em>linear</em> function y = 5 · x - 8, we proceed to use the following <em>substitution</em> formulas: x = r · cos θ, y = r · sin θ

r · sin θ = 5 · r · cos θ - 8

r · sin θ - 5 · r · cos θ = - 8

r · (sin θ - 5 · cos θ) = - 8

r = - 8 / (sin θ - 5 · cos θ)

The <em>linear</em> function y = 5 · x - 8 is equivalent to the function r = - 8 / (sin θ - 5 · cos θ).

To learn more on trigonometric expressions: brainly.com/question/14746686

#SPJ1

4 0
2 years ago
Whoever gives me the correct answer to this will get a brainlest <br> I need the answer ASAP!
Amiraneli [1.4K]

Volume of cone= 1/3πr^2h

8842.24 m^3= 1/3πr^2h

1/3*3.14*33*r^2= 8842.24m^3

r^2 = 8842.24*3/3.14*33

r^2= 26526.72/103.62

r^2 = 256

r= √256

r= 16m

Hope it helps. Please mark brainliest.

8 0
3 years ago
Other questions:
  • Which similarity postulate or theorem can be used to verified that the two triangles shown below are similar? PLEASE HELP ASAPP
    10·1 answer
  • how many 16-ounce bottels would be needed to hold the same total amount of water of water as 56 20 ounces
    10·1 answer
  • 9x-7y-4z what is the answer
    13·1 answer
  • How can you rewrite this equation in terms of 'x'?
    12·2 answers
  • Please solve this smart pole
    13·1 answer
  • The total money earned if we sold for scarves at $20 each
    12·2 answers
  • Please help due soon!!!
    5·1 answer
  • What does CRE mean in edge?​
    6·1 answer
  • Help pls report cards in 2 days
    12·1 answer
  • Graph 4x + y = 6x - 1<br> Show your work and explain the method used to determine the graph.
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!