Answer:
30 miles
Step-by-step explanation:
Before finding the perimeter of the given right angled triangle, we need to find the length of a.
We'll be using pythagoras property to find the value of a.
According to the pythagoras property, sum of the squares of base and perpendicular is equivalent to the square of hypotenuse.
Here,
- Hypotenuse = 13 mi
- Base = 12 mi
- Perpendicular (a) = ?
→ H² = B² + P²
→ H² - B² = P²
→ (13 mi)² - (12 mi)² = a²
→ 169 mi² - 144 mi² = a²
→ 25 mi² = a²
→ √(25 mi²) = a
→ <u>5 mi = a</u>
We know that,
- Perimeter of ∆ = Sum of all sides
→ Perimeter = 13 mi + 12 mi + a
→ Perimeter = 13 mi + 12 mi + 5 mi
→ Perimeter = 30 miles
<u>Perimete</u><u>r</u><u> </u><u>of</u><u> </u><u>the </u><u>triangle</u><u> </u><u>is</u><u> </u><u>3</u><u>0</u><u> </u><u>mi</u><u>l</u><u>e</u><u>s</u><u>.</u>