Answer:
We all know that 22/7 is a very good approximation to pi. But this well-known fraction is is actually 1/791 larger than a slightly less-well-known but much more mysterious rational approximation for pi: . The fraction 355/113 is incredibly close to pi, within a third of a millionth of the exact value.
Step-by-step explanation:
Answer:
The zeros of the function are;
x = 0 and x = 1
Step-by-step explanation:
The zeroes of the function simply imply that we find the values of x for which the corresponding value of y is 0.
We let y be 0 in the given equation;
y = x^3 - 2x^2 + x
x^3 - 2x^2 + x = 0
We factor out x since x appears in each term on the Left Hand Side;
x ( x^2 - 2x + 1) = 0
This implies that either;
x = 0 or
x^2 - 2x + 1 = 0
We can factorize the equation on the Left Hand Side by determining two numbers whose product is 1 and whose sum is -2. The two numbers by trial and error are found to be -1 and -1. We then replace the middle term by these two numbers;
x^2 -x -x +1 = 0
x(x-1) -1(x-1) = 0
(x-1)(x-1) = 0
x-1 = 0
x = 1
Therefore, the zeros of the function are;
x = 0 and x = 1
The graph of the function is as shown in the attachment below;
Answer:
i think this is the answer
Answer:
Because the sum of these angles will always be 360°, then each exterior angle would be 60° (360° ÷ 6 = 60°). If each exterior angle is 60°, then each interior angle is 120° (180° − 60° = 120°).
Answer:
Step-by-step explanation:
... integer ...
The only variable in a sequence is the index, usually written as n, which is {1, 2, 3, 4, ... }