Answer:
93.32% probability that a randomly selected score will be greater than 63.7.
Step-by-step explanation:
Problems of normally distributed samples are solved using the z-score formula.
In a set with mean
and standard deviation
, the zscore of a measure X is given by:

The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the pvalue, we get the probability that the value of the measure is greater than X.
In this problem, we have that:

What is the probability that a randomly selected score will be greater than 63.7.
This is 1 subtracted by the pvalue of Z when X = 63.7. So



has a pvalue of 0.0668
1 - 0.0668 = 0.9332
93.32% probability that a randomly selected score will be greater than 63.7.
Answer:
1.02272727... mi per hr
Step-by-step explanation:
Answer:
Therefore, the conclusion is valid.
The required diagram is shown below:
Step-by-step explanation:
Consider the provided statement.
Premises: All good students are good readers. Some math students are good students.
Conclusion: Some math students are good readers.
It is given that All good students are good readers, that means all good students are the subset of good readers.
Now, it is given that some math students are good students, that means there exist some math student who are good students as well as good reader.
Therefore, the conclusion is valid.
The required diagram is shown below:
Answer:
x = 5
Step-by-step explanation:



Answer : fx + fh - f(x) / h