The first step to solving this expression is to factor out the perfect cube
![\sqrt[3]{m^{2} n^{3} X n^{2} }](https://tex.z-dn.net/?f=%20%5Csqrt%5B3%5D%7Bm%5E%7B2%7D%20%20n%5E%7B3%7D%20X%20n%5E%7B2%7D%20%20%20%7D%20)
The root of a product is equal to the product of the roots of each factor. This will make the expression look like the following:
![\sqrt[3]{ m^{2} n^{2} }](https://tex.z-dn.net/?f=%20%5Csqrt%5B3%5D%7B%20m%5E%7B2%7D%20n%5E%7B2%7D%20%20%7D%20)
Finally,, reduce the index of the radical and exponent with 3
n
![\sqrt[3]{ m^{2} n^{2} }](https://tex.z-dn.net/?f=%20%5Csqrt%5B3%5D%7B%20m%5E%7B2%7D%20n%5E%7B2%7D%20%20%7D%20)
This means that the correct answer to your question is n
![\sqrt[3]{ m^{2} n^{2} }](https://tex.z-dn.net/?f=%20%5Csqrt%5B3%5D%7B%20m%5E%7B2%7D%20n%5E%7B2%7D%20%7D%20)
.
Let me know if you have any further questions
:)
Okay, so let's find the actual failure rate first. 6/1000 times 100 (to give over a 100%) equals to 0.6. The actual failure rate is 0.6%. The theoretical probability is 0.2% 0.6-0.2=0.4. The difference is 0.4%.
Hope that helped!
Answer:
(1/2), (2/4), (3/6), (4/8), (5/10) etc...
Step-by-step explanation:
0.50 is a decimal that represent a half of one...
This is already in decimal form... Do you mean fraction? If so...
(1/2), (2/4), (3/6), (4/8), (5/10) etc...
-12 + 18 = 70 - 64 or(-12+18)+(6*12)-2
If a polygon does not have six sides, then it is not a hexagon.