The answer is 7. Hope it helps
Equation: 70-m=2
Solution: the answer is 68.
The cost to rent the space with measures 18 ft x 16 ft for a year is $62,208
<h3>What is an
equation?</h3>
An equation is an expression that shows the relationship between two or more numbers and variables.
The area of the space = 18 ft * 16 ft = 288 ft²
The cost per month is $18 per ft² per month, hence:
The cost of rent per year = $18 per ft² per month * 288 ft² * 12 month = $62,208
The cost to rent the space with measures 18 ft x 16 ft for a year is $62,208
Find out more on equation at: brainly.com/question/2972832
#SPJ1
Answer:
<h2><em>
Three to the three fifths power.</em></h2>
Step-by-step explanation:
The given expression is
![\sqrt{3\sqrt[5]{3} }](https://tex.z-dn.net/?f=%5Csqrt%7B3%5Csqrt%5B5%5D%7B3%7D%20%7D)
To simplify this expression, we have to use a specific power property which allow us to transform a root into a power with a fractional exponent, the property states:
![\sqrt[n]{x^{m}}=x^{\frac{m}{n}}](https://tex.z-dn.net/?f=%5Csqrt%5Bn%5D%7Bx%5E%7Bm%7D%7D%3Dx%5E%7B%5Cfrac%7Bm%7D%7Bn%7D%7D)
Applying the property, we have:
![\sqrt{3\sqrt[5]{3}}=\sqrt{3(3)^{\frac{1}{5}}}=(3(3)^{\frac{1}{5}})^{\frac{1}{2}}](https://tex.z-dn.net/?f=%5Csqrt%7B3%5Csqrt%5B5%5D%7B3%7D%7D%3D%5Csqrt%7B3%283%29%5E%7B%5Cfrac%7B1%7D%7B5%7D%7D%7D%3D%283%283%29%5E%7B%5Cfrac%7B1%7D%7B5%7D%7D%29%5E%7B%5Cfrac%7B1%7D%7B2%7D%7D)
Now, we multiply exponents:

Then, we sum exponents to get the simplest form:
![3^{\frac{1}{2}}3^{\frac{1}{10}}=3^{\frac{1}{2}+\frac{1}{10}} =3^{\frac{10+2}{20}}=3^{\frac{12}{20}} \\\therefore \sqrt{3\sqrt[5]{3}}=3^{\frac{3}{5} }](https://tex.z-dn.net/?f=3%5E%7B%5Cfrac%7B1%7D%7B2%7D%7D3%5E%7B%5Cfrac%7B1%7D%7B10%7D%7D%3D3%5E%7B%5Cfrac%7B1%7D%7B2%7D%2B%5Cfrac%7B1%7D%7B10%7D%7D%20%3D3%5E%7B%5Cfrac%7B10%2B2%7D%7B20%7D%7D%3D3%5E%7B%5Cfrac%7B12%7D%7B20%7D%7D%20%20%5C%5C%5Ctherefore%20%5Csqrt%7B3%5Csqrt%5B5%5D%7B3%7D%7D%3D3%5E%7B%5Cfrac%7B3%7D%7B5%7D%20%7D)
Therefore, the right answer is <em>three to the three fifths power.</em>
The formula to find the slope of a line is m =

where the x's and y's are your given coordinates and m is your slope. So, plug in your coordinates and solve.
m = <span>
![\frac{y_2 - y_1}{x_2 - x_1} Plug in your coordinates m = [tex] \frac{-2 - 7}{8 - -1} Cancel out the double negative m = [tex] \frac{-2 - 7}{8 + 1} Simplify m = [tex] \frac{-9}{9} Divide m = -1 Now, plug that slope and one set of your given coordinates into point-slope form, [tex]y - y_1 = m(x - x_1)](https://tex.z-dn.net/?f=%20%5Cfrac%7By_2%20-%20y_1%7D%7Bx_2%20-%20x_1%7D%20%20%20Plug%20in%20your%20coordinates%20%3C%2Fspan%3Em%20%3D%20%3Cspan%3E%5Btex%5D%20%5Cfrac%7B-2%20-%207%7D%7B8%20-%20-1%7D%20%20%20Cancel%20out%20the%20double%20negative%20%3C%2Fspan%3Em%20%3D%20%3Cspan%3E%5Btex%5D%20%5Cfrac%7B-2%20-%207%7D%7B8%20%2B%201%7D%20%20%20Simplify%20%3C%2Fspan%3Em%20%3D%20%3Cspan%3E%5Btex%5D%20%5Cfrac%7B-9%7D%7B9%7D%20%20%20Divide%20m%20%3D%20-1%20%20%3C%2Fspan%3E%20Now%2C%20plug%20that%20slope%20and%20one%20set%20of%20your%20given%20coordinates%20into%20point-slope%20form%2C%20%5Btex%5Dy%20-%20y_1%20%3D%20m%28x%20-%20x_1%29)
. I'll use (-1, 7).
<span>

Plug in your points and slope
</span>y - 7 = -1(x - -1) Cancel out the double negative
y - 7 = -1(x + 1) Use the Distributive Property
y - 7 = -x - 1 Add 7 to both sides
y = -x + 6
</span>