8+16 = 24, which is in it's simplest form. (A prime factorization would be
![2^3*3](https://tex.z-dn.net/?f=2%5E3%2A3)
)
Answer:
Step-by-step explanation:
This is a cube with side length 3.4 cm.
The standard formula for the volume of a cube of side length s is V = s³.
With s = 3.4 cm here, we get the volume
V = (3.4 cm)³ = 39.304 cm³, or approximately 39.3 cm³
Answer:
your answer is 117
Step-by-step explanation:
2460÷12=117
i hope this helps
have a nice day/night
mark brainliest please :)
![\frac{1}{7} -3(\frac{3}{7}h -\frac{2}{7}) = \frac{7-9h}{7}](https://tex.z-dn.net/?f=%5Cfrac%7B1%7D%7B7%7D%20-3%28%5Cfrac%7B3%7D%7B7%7Dh%20-%5Cfrac%7B2%7D%7B7%7D%29%20%3D%20%5Cfrac%7B7-9h%7D%7B7%7D)
<em><u>Solution:</u></em>
<em><u>Given expression is:</u></em>
![\frac{1}{7} -3(\frac{3}{7}h -\frac{2}{7})](https://tex.z-dn.net/?f=%5Cfrac%7B1%7D%7B7%7D%20-3%28%5Cfrac%7B3%7D%7B7%7Dh%20-%5Cfrac%7B2%7D%7B7%7D%29)
We have to combine the like terms
From given expression,
![\frac{1}{7} -3(\frac{3}{7}h -\frac{2}{7})](https://tex.z-dn.net/?f=%5Cfrac%7B1%7D%7B7%7D%20-3%28%5Cfrac%7B3%7D%7B7%7Dh%20-%5Cfrac%7B2%7D%7B7%7D%29)
By distributive property,
The distributive property lets you multiply a sum by multiplying each addend separately and then add the products.
a(b + c) = ab + bc
Therefore,
Solve for brackets using distributive property
![\frac{1}{7} - (3 \times \frac{3}{7}h) + (3 \times \frac{2}{7})\\\\\frac{1}{7} - \frac{9h}{7} + \frac{6}{7}](https://tex.z-dn.net/?f=%5Cfrac%7B1%7D%7B7%7D%20-%20%283%20%5Ctimes%20%5Cfrac%7B3%7D%7B7%7Dh%29%20%2B%20%283%20%5Ctimes%20%5Cfrac%7B2%7D%7B7%7D%29%5C%5C%5C%5C%5Cfrac%7B1%7D%7B7%7D%20-%20%5Cfrac%7B9h%7D%7B7%7D%20%2B%20%5Cfrac%7B6%7D%7B7%7D)
Add 1/7 and 6/7
![\frac{1}{7} + \frac{6}{7} -\frac{9h}{7}\\\\\frac{1+6}{7} -\frac{9h}{7}\\\\Simplify\\\\\frac{7}{7}-\frac{9h}{7}\\\\1-\frac{9h}{7}\\\\Simplify\\\\\frac{7-9h}{7}](https://tex.z-dn.net/?f=%5Cfrac%7B1%7D%7B7%7D%20%2B%20%5Cfrac%7B6%7D%7B7%7D%20-%5Cfrac%7B9h%7D%7B7%7D%5C%5C%5C%5C%5Cfrac%7B1%2B6%7D%7B7%7D%20-%5Cfrac%7B9h%7D%7B7%7D%5C%5C%5C%5CSimplify%5C%5C%5C%5C%5Cfrac%7B7%7D%7B7%7D-%5Cfrac%7B9h%7D%7B7%7D%5C%5C%5C%5C1-%5Cfrac%7B9h%7D%7B7%7D%5C%5C%5C%5CSimplify%5C%5C%5C%5C%5Cfrac%7B7-9h%7D%7B7%7D)
Thus the equivalent expression is found
Answer:
I would need to see the models to answer this question.