Answer:
Step-by-step explanation:
F(x) = x² - 2x + 1
= (x - 1)²
By comparing this equation with the vertex form of the quadratic equation,
y = (x - h)² + k
Here, (h, k) is the vertex
Vertex of the parabola → (1, 0)
x-intercepts → (x - 1)² = 0
x = 1
y-intercepts → y = (0 - 1)²
y = 1
Now we can draw the graph of the given function,
From this graph,
As x → 0,


f(0) = (0 - 1)²
= 1
Since, 
Therefore, given function is continuous at x = 0.
Answer:
Therefore,
![r=\sqrt[3]{\frac{3V}{4\pi }}](https://tex.z-dn.net/?f=r%3D%5Csqrt%5B3%5D%7B%5Cfrac%7B3V%7D%7B4%5Cpi%20%7D%7D)
is the required r
Step-by-step explanation:
Given:
Volume of inside of the sphere is given as

where r is the radius of the sphere
To Find:
r =?
Solution:
We have
......Given
![3\times V=4\pi r^{3} \\\\\therefore r^{3}=\frac{3V}{4\pi } \\\\\therefore r=\sqrt[3]{\frac{3V}{4\pi }} \textrm{which is the expression for r}](https://tex.z-dn.net/?f=3%5Ctimes%20V%3D4%5Cpi%20r%5E%7B3%7D%20%5C%5C%5C%5C%5Ctherefore%20r%5E%7B3%7D%3D%5Cfrac%7B3V%7D%7B4%5Cpi%20%7D%20%5C%5C%5C%5C%5Ctherefore%20r%3D%5Csqrt%5B3%5D%7B%5Cfrac%7B3V%7D%7B4%5Cpi%20%7D%7D%20%5Ctextrm%7Bwhich%20is%20the%20expression%20for%20r%7D)
Therefore,
![r=\sqrt[3]{\frac{3V}{4\pi }}](https://tex.z-dn.net/?f=r%3D%5Csqrt%5B3%5D%7B%5Cfrac%7B3V%7D%7B4%5Cpi%20%7D%7D)
is the required r
It’s D
...........................
Answer:
5 2/6
Step-by-step explanation:
you have to mutiply