One hypothesis that explains the result is : A) Two genes are involved with 12:3:1 epistasis, such that A_B_ and A_bb are black, aaB_ is brown,and aabb is green.
Explanation:
- This is a case of Dominant Epistasis.
- When two genes are involved and presence of dominant allele of one gene masks the effect of either allele of the second gene then the epistasis is termed as dominant epistasis.
- In the given case black :brown: green ratio is approximately equal to 12:3:1.
- Here presence of a dominant A allele that is responsible for the black colour masks the effect of either allele of B. Therefore A_B_ and A_bb produces black beetles
- Again , absence of dominant A allows B to express itself and Brown beetles are produced thus aaB_ is brown.
- When both the genes are present as recessive alleles, neither brown nor black colour is expressed and the beetles are green.Thus, aabb are green.
Answer:
3
Explanation:
i looked it up i hope that helped!
An isotope of the element.
<u> Allele frequencies to change from one generation to the next.-</u>
<u>B. </u><u>Mutation</u><u>; C. Random genetic drift; D. </u><u>Migration</u><u>; F. Natural selection</u>
- Selection, mutation, migration, and genetic drift are the mechanisms that effect changes in allele frequencies.
- When one or more of these forces are acting, the population violates Hardy-Weinberg assumptions, and evolution occurs.
Why do allele frequencies change from one generation to the next?
Random selection: Allele frequencies may fluctuate from one generation to the next when people with particular genotypes outlive those with different genotypes.
No mutation: Allele frequencies may fluctuate from one generation to the next if new alleles are produced via mutation or if alleles mutate at different rates.
What are 5 factors that cause changes in allele frequency?
- A population, a collection of interacting individuals of a single species, exhibits a change in allele frequency from one generation to the next due to five main processes.
- These include natural selection, gene flow, genetic drift, and mutation.
Learn more about allele frequency
brainly.com/question/7719918
#SPJ4
<u>The complete question is -</u>
Identify the evolutionary forces that can cause allele frequencies to change from one generation to the next. Check all that apply
A. Inbreeding
B. Mutation,
C. random genetic drift
D. migration
E. extinction
F. natural selection
Answer:
ATP is produced most efficiently by structure C.(mitochondria)