<u>Answer:</u> The ion that is expected to have a larger radius than the corresponding atom is chlorine.
<u>Explanation:</u>
There are two types of ions:
- <u>Cations:</u> They are formed when an atom looses its valence electrons. They are positive ions.
- <u>Anions:</u> They are formed when an atom gain electrons in its outermost shell. They are negative ions.
For positive ions, the removal of electron increases the nuclear charge for an outermost electron because the outermost electrons are more strongly attracted by the nucleus. So, the effective nuclear charge increases for cations and thus, the size of the cation will be smaller than that of the corresponding atom.
For negative ions, the addition of electron decreases the nuclear charge for an outermost electron because the outermost electrons are less strongly attracted by the nucleus. So, the effective nuclear charge decreases for anions and thus, the size of the anion will be larger than that of the corresponding atom.
For the given options:
<u>Option a:</u> Chlorine
Chlorine gains 1 electron and form
ion
<u>Option b:</u> Sodium
Sodium looses 1 electron and form
ion
<u>Option c:</u> Copper
Copper looses 2 electrons and form
ion
<u>Option d:</u> Strontium
Strontium looses 2 electrons and form
ion
Hence, the ion that is expected to have a larger radius than the corresponding atom is chlorine.
The significant figures will be 1.
As, weight of acetylsalicylic acid = 0. 4 g
We obtain 400 mg when we convert 0.4g of acetylsalicylic acid to mg.
So, 400 milligrams are worth 0.4 grams when converted to grams.
There is just one significant figure because 0 before a decimal is not significant i.e. 4.
<h3><u>What are significant figures?</u></h3>
The digits of a number that have relevance in relation to the measurement's resolution are known as significant figures. Additionally known as significant figures in chemistry. All experimental measurements are subject to some degree of uncertainity.
<u />
Check more such questions based on significant figure here:
brainly.com/question/24491627
#SPJ4
Answer:
The basic steps of the scientific method are: 1) make an observation that describes a problem, 2) create a hypothesis, 3) test the hypothesis, and 4) draw conclusions and refine the hypothesis.
This is true
Because when water evaporates molecules break and separate into different atoms