Answer:
it is easy use the formula of triangle which is 1/2(base × height) and base is the side where the height touches and height means the perpendicular line.
And in some cases there may be the use of pythagoras theorem
Answer:
-11.8
Step-by-step explanation:
hope this helps!!!:)
a vertical axis, I assume it means a vertical axis of symmetry, thus it'd be a vertical parabola, like the one in the picture below.
![\bf ~~~~~~\textit{parabola vertex form} \\\\ \begin{array}{llll} y=a(x- h)^2+ k\qquad \qquad \leftarrow vertical\\\\ x=a(y- k)^2+ h \end{array} \qquad\qquad vertex~~(\stackrel{}{ h},\stackrel{}{ k}) \\\\[-0.35em] \rule{34em}{0.25pt}\\\\ \begin{cases} h=0\\ k=0 \end{cases}\implies y=a(x-0)^2+0 \\\\\\ \textit{we also know that } \begin{cases} x=-2\\ y=3 \end{cases}\implies 3=a(-2-0)^2+0\implies 3=4a \\\\\\ \cfrac{3}{4}=a~\hspace{10em}y=\cfrac{3}{4}(x-0)^2+0\implies \boxed{y=\cfrac{3}{4}x^2}](https://tex.z-dn.net/?f=%5Cbf%20~~~~~~%5Ctextit%7Bparabola%20vertex%20form%7D%20%5C%5C%5C%5C%20%5Cbegin%7Barray%7D%7Bllll%7D%20y%3Da%28x-%20h%29%5E2%2B%20k%5Cqquad%20%5Cqquad%20%5Cleftarrow%20vertical%5C%5C%5C%5C%20x%3Da%28y-%20k%29%5E2%2B%20h%20%5Cend%7Barray%7D%20%5Cqquad%5Cqquad%20vertex~~%28%5Cstackrel%7B%7D%7B%20h%7D%2C%5Cstackrel%7B%7D%7B%20k%7D%29%20%5C%5C%5C%5C%5B-0.35em%5D%20%5Crule%7B34em%7D%7B0.25pt%7D%5C%5C%5C%5C%20%5Cbegin%7Bcases%7D%20h%3D0%5C%5C%20k%3D0%20%5Cend%7Bcases%7D%5Cimplies%20y%3Da%28x-0%29%5E2%2B0%20%5C%5C%5C%5C%5C%5C%20%5Ctextit%7Bwe%20also%20know%20that%20%7D%20%5Cbegin%7Bcases%7D%20x%3D-2%5C%5C%20y%3D3%20%5Cend%7Bcases%7D%5Cimplies%203%3Da%28-2-0%29%5E2%2B0%5Cimplies%203%3D4a%20%5C%5C%5C%5C%5C%5C%20%5Ccfrac%7B3%7D%7B4%7D%3Da~%5Chspace%7B10em%7Dy%3D%5Ccfrac%7B3%7D%7B4%7D%28x-0%29%5E2%2B0%5Cimplies%20%5Cboxed%7By%3D%5Ccfrac%7B3%7D%7B4%7Dx%5E2%7D)
Answer:
C
Step-by-step explanation:

Answer:
x = 0, y = 1
Step-by-step explanation:
2x + 6y = 6 → (1)
x - 3y = - 3 ( add 3y to both sides )
x = 3y - 3 → (2)
substitute x = 3y - 3 into (1)
2(3y - 3) + 6y = 6 ← distribute parenthesis and simplify left side
6y - 6 + 6y = 6
12y - 6 = 6 ( add 6 to both sides )
12y = 12 ( divide both sides by 12 )
y = 1
substitute y = 1 into (2)
x = 3(1) - 3 = 3 - 3 = 0
solution is x = 0 , y = 1