1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
ycow [4]
3 years ago
5

Which of the following is an open statement?

Mathematics
1 answer:
nignag [31]3 years ago
5 0

Answer:

an angel with measure 40 degree is acute because 42 is less than 90

You might be interested in
Convert the subtraction problem into addition problem -3.7-(-10.1)
Serggg [28]
Yeyeh7226ueurudududud
5 0
3 years ago
Read 2 more answers
Suppose that the number of drivers who travel between a particular origin and destination during a designated time period has a
kipiarov [429]

Answer:

a) P(k≤11) = 0.021

b) P(k>23) = 0.213

c) P(11≤k≤23) = 0.777

P(11<k<23) = 0.699

d) P(15<k<25)=0.687

Step-by-step explanation:

a) What is the probability that the number of drivers will be at most 11?

We have to calculate P(k≤11)

P(k\leq11)=\sum_0^{11} P(k

P(k=0) = 20^0e^{-20}/0!=1 \cdot 0.00000000206/1=0\\\\P(k=1) = 20^1e^{-20}/1!=20 \cdot 0.00000000206/1=0\\\\P(k=2) = 20^2e^{-20}/2!=400 \cdot 0.00000000206/2=0\\\\P(k=3) = 20^3e^{-20}/3!=8000 \cdot 0.00000000206/6=0\\\\P(k=4) = 20^4e^{-20}/4!=160000 \cdot 0.00000000206/24=0\\\\P(k=5) = 20^5e^{-20}/5!=3200000 \cdot 0.00000000206/120=0\\\\P(k=6) = 20^6e^{-20}/6!=64000000 \cdot 0.00000000206/720=0\\\\P(k=7) = 20^7e^{-20}/7!=1280000000 \cdot 0.00000000206/5040=0.001\\\\

P(k=8) = 20^8e^{-20}/8!=25600000000 \cdot 0.00000000206/40320=0.001\\\\P(k=9) = 20^9e^{-20}/9!=512000000000 \cdot 0.00000000206/362880=0.003\\\\P(k=10) = 20^{10}e^{-20}/10!=10240000000000 \cdot 0.00000000206/3628800=0.006\\\\P(k=11) = 20^{11}e^{-20}/11!=204800000000000 \cdot 0.00000000206/39916800=0.011\\\\

P(k\leq11)=\sum_0^{11} P(k

b) What is the probability that the number of drivers will exceed 23?

We can write this as:

P(k>23)=1-\sum_0^{23} P(k=x_i)=1-(P(k\leq11)+\sum_{12}^{23} P(k=x_i))

P(k=12) = 20^{12}e^{-20}/12!=8442485.238/479001600=0.018\\\\P(k=13) = 20^{13}e^{-20}/13!=168849704.75/6227020800=0.027\\\\P(k=14) = 20^{14}e^{-20}/14!=3376994095.003/87178291200=0.039\\\\P(k=15) = 20^{15}e^{-20}/15!=67539881900.067/1307674368000=0.052\\\\P(k=16) = 20^{16}e^{-20}/16!=1350797638001.33/20922789888000=0.065\\\\P(k=17) = 20^{17}e^{-20}/17!=27015952760026.7/355687428096000=0.076\\\\P(k=18) = 20^{18}e^{-20}/18!=540319055200533/6402373705728000=0.084\\\\

P(k=19) = 20^{19}e^{-20}/19!=10806381104010700/121645100408832000=0.089\\\\P(k=20) = 20^{20}e^{-20}/20!=216127622080213000/2432902008176640000=0.089\\\\P(k=21) = 20^{21}e^{-20}/21!=4322552441604270000/51090942171709400000=0.085\\\\P(k=22) = 20^{22}e^{-20}/22!=86451048832085300000/1.12400072777761E+21=0.077\\\\P(k=23) = 20^{23}e^{-20}/23!=1.72902097664171E+21/2.5852016738885E+22=0.067\\\\

P(k>23)=1-\sum_0^{23} P(k=x_i)=1-(P(k\leq11)+\sum_{12}^{23} P(k=x_i))\\\\P(k>23)=1-(0.021+0.766)=1-0.787=0.213

c) What is the probability that the number of drivers will be between 11 and 23, inclusive? What is the probability that the number of drivers will be strictly between 11 and 23?

Between 11 and 23 inclusive:

P(11\leq k\leq23)=P(x\leq23)-P(k\leq11)+P(k=11)\\\\P(11\leq k\leq23)=0.787-0.021+ 0.011=0.777

Between 11 and 23 exclusive:

P(11< k

d) What is the probability that the number of drivers will be within 2 standard deviations of the mean value?

The standard deviation is

\mu=\lambda =20\\\\\sigma=\sqrt{\lambda}=\sqrt{20}= 4.47

Then, we have to calculate the probability of between 15 and 25 drivers approximately.

P(15

P(k=16) = 20^{16}e^{-20}/16!=0.065\\\\P(k=17) = 20^{17}e^{-20}/17!=0.076\\\\P(k=18) = 20^{18}e^{-20}/18!=0.084\\\\P(k=19) = 20^{19}e^{-20}/19!=0.089\\\\P(k=20) = 20^{20}e^{-20}/20!=0.089\\\\P(k=21) = 20^{21}e^{-20}/21!=0.085\\\\P(k=22) = 20^{22}e^{-20}/22!=0.077\\\\P(k=23) = 20^{23}e^{-20}/23!=0.067\\\\P(k=24) = 20^{24}e^{-20}/24!=0.056\\\\

3 0
3 years ago
3. Is AABC a right triangle? Explain​
lukranit [14]

Answer:

no its bbac

Step-by-step explanation:

8 0
3 years ago
Read 2 more answers
Henry is 4 years younger than Linda. Linda is 20 years old. After correctly carrying out the Solve step of the five-step problem
ehidna [41]

C. 16.

20 - 4 = 16

Hope you do great :)

8 0
4 years ago
Read 2 more answers
(a) A lamp has two bulbs of a type with an average lifetime of 1600 hours. Assuming that we can model the probability of failure
lara [203]

Complete Question

The complete question is shown on the first uploaded image

Answer:

a

The probability is P_T= 0.4560

b

The probability is P_F= 0.0013

Step-by-step explanation:

From the question we are told that

The mean for the exponential density function of bulbs failure is \mu = 1600 \ hours

Generally the cumulative distribution for exponential distribution is mathematically represented as

       1 - e^{- \lambda x}

The objective is to obtain the p=probability of the bulbs failure within 1800 hours

So for the first bulb the probability will be

        P_1(x < 1800)

 And for the second bulb the probability will be

       P_2 (x< 1800)

So from our probability that we are to determine the area to the left of 1800 on the distribution curve

    Now the  rate parameter  \lambda is mathematically represented as

                           \lambda = \frac{1}{\mu}

                          \lambda = \frac{1}{1600}

The probability of the first bulb failing with 1800 hours is mathematically evaluated as

                   P_1(x < 1800) = 1 - e^{\frac{1}{1600} * 1800 }

                                        = 0.6753

Now the probability of both bulbs failing would be

              P_T=P_1(x < 1800) * P_2(x < 1800)

           = 0.6375 * 06375

           P_T= 0.4560

Let assume that one bulb failed at time T_a and the second bulb failed at time T_b  then

                 T_a + T_b = 1800\ hours

The mathematical expression to obtain the probability that the first bulb failed within between zero and T_a and the second bulb failed between T_a \ and \  1800 is represented as

             P_F=\int_{0}^{1800}\int_{0}^{1800-x} \f{\lambda }^{2}e^{-\lambda x}* e^{-\lambda y}dx dy

            =\int_{0}^{1800} {\lambda }e^{-\lambda x}\int_{0}^{1800-x} {\lambda } e^{-\lambda y}dx dy

            =\int_{0}^{1800} {\frac{1}{1600} }e^{-\lambda x}\int_{0}^{1800-x} \frac{1}{1600 } e^{-\lambda y}dx dy

          =\int_{0}^{1800} {\frac{1}{1600} }e^{-\lambda x}[e^{- \lambda y}]\left {1800-x} \atop {0}} \right. dx        

          =\int_{0}^{1800} {\frac{1}{1600} }e^{-\frac{x}{1600} }[e^{- \frac{1800 -x}{1600} }-1] dx

            =[ {\frac{1}{1600} }e^{-\frac{1800}{1600} }-\frac{1}{1600}[e^{- \frac{x}{1600} }] \left {1800} \atop {0}} \right.

           =[ {\frac{1}{1600} }e^{-\frac{1800}{1600} }-\frac{1}{1600}[e^{- \frac{1800}{1600} }] -[[ {\frac{1}{1600} }e^{-\frac{1800}{1600} }-\frac{1}{1600}[e^{-0}]

           =[\frac{1}{1600} e^{-\frac{1800}{1600} } - \frac{1}{1600} e^{-0}  ]

         =0.001925 -0.000625

         P_F= 0.0013

4 0
3 years ago
Read 2 more answers
Other questions:
  • Mary was told that a line goes through the points (1, 3) and (6, -2) and has a slope of 3.
    15·1 answer
  • Is the statement fraction 6/3 = 2 since 2x3 = 6
    10·1 answer
  • Mr. Mendez had 24 cows on his farm. At an auction, he bought 5 more cows. Find the percent of change in the number of cows on th
    5·1 answer
  • Need help with this linear algebra problem
    10·1 answer
  • When a number is a multiple of 2 what are the possible values for the ones digit
    9·2 answers
  • Which of these is the best estimate of 68 x 1 7
    11·1 answer
  • Help me solve this problem please
    11·1 answer
  • Enter the coordinates of the solution of these two linear equations.
    11·1 answer
  • X+y =783<br>10x+7y=6459​
    6·1 answer
  • Can someone check if this is right or did I solve it wrong?
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!