Using a table of values, the outputs of f(x) for whole numbers are 0, 1, 4, 9, 16, 25, 36, and so on. For the same input values, g(x) has outputs of 1, 2, 4, 8, 16, 32, and 64. Continuing to double the output each time results in larger outputs than those of f(x). The exponential function, g(x), has a constant multiplicative rate of change and will increase at a faster rate than the quadratic function.
(ed. just click all of them)
Method:
First place the replace of p and r using brackets.
= 3(6) + 11.7(7)
3 times 6 is 18 and 11.7 times 7 is 81.9
= 18 + 81.9
add one and one together you get
= 99.9
<em>hope </em><em>it </em><em>helps</em>
This question is incomplete, the complete question is;
Let X denote the time in minutes (rounded to the nearest half minute) for a blood sample to be taken. The probability mass function for X is:
x 0 0.5 1 1.5 2 2.5
f(x) 0.1 0.2 0.3 0.2 0.1 0.1
determine;
a) P( X < 2.5 )
B) P( 0.75 < X ≤ 1.5 )
Answer:
a) P( X < 2.5 ) = 0.9
b) P( 0.75 < X ≤ 1.5 ) = 0.5
Step-by-step explanation:
Given the data in the question;
The probability mass function for X is:
x 0 0.5 1 1.5 2 2.5
f(x) 0.1 0.2 0.3 0.2 0.1 0.1
a) P( X < 2.5 )
P( X < 2.5 ) = p[ x = 0 ] + p[ x = 0.5 ] + p[ x = 1 ] + p[ x = 1.5 ] + p[ x = 2 ]
so
P( X < 2.5 ) = 0.1 + 0.2 + 0.3 + 0.2 + 0.1
P( X < 2.5 ) = 0.9
b) P( 0.75 < X ≤ 1.5 )
P( 0.75 < X ≤ 1.5 ) = p[ x = 1 ] + p[ x = 1.5 ]
so
P( 0.75 < X ≤ 1.5 ) = 0.3 + 0.2
P( 0.75 < X ≤ 1.5 ) = 0.5
Slope = (y2-y1)/(x2-x1)
The points: (2,0) and (0,3)
(3-0)/(0-2) = 3/-2 = -3/2
The solution is -3/2
The answer is bc cause you multiply 12 x 2= 24