Given g(x) = x square -7x + 1over4 show that the least possible value of g(x) is -12
1 answer:
Answer:
![-\frac{45}{16}](https://tex.z-dn.net/?f=-%5Cfrac%7B45%7D%7B16%7D)
Step-by-step explanation:
![g(x)=\frac{x^{2} -7x+1}{4}](https://tex.z-dn.net/?f=g%28x%29%3D%5Cfrac%7Bx%5E%7B2%7D%20-7x%2B1%7D%7B4%7D)
Take the derivate of g:
![g'(x)=\frac{x-7}{4}](https://tex.z-dn.net/?f=g%27%28x%29%3D%5Cfrac%7Bx-7%7D%7B4%7D)
Find x that:
g'(x)=0
<h2>solving:</h2>
![\frac{2x-7}{4}=0\\x=\frac{7}{2}](https://tex.z-dn.net/?f=%5Cfrac%7B2x-7%7D%7B4%7D%3D0%5C%5Cx%3D%5Cfrac%7B7%7D%7B2%7D)
This x give the least possible value that are g(7/2):
![g(\frac{7}{2}) =-\frac{45}{16}](https://tex.z-dn.net/?f=g%28%5Cfrac%7B7%7D%7B2%7D%29%20%3D-%5Cfrac%7B45%7D%7B16%7D)
You might be interested in
![{x}^{2} + 7x + 9 = 3 \\ {x}^{2} + 7x + 9 - 3 = 0 \\ {x }^{2} + 7x + 6 = 0](https://tex.z-dn.net/?f=%20%7Bx%7D%5E%7B2%7D%20%20%2B%207x%20%2B%209%20%3D%203%20%5C%5C%20%20%7Bx%7D%5E%7B2%7D%20%20%2B%207x%20%2B%209%20-%203%20%3D%200%20%5C%5C%20%20%7Bx%20%7D%5E%7B2%7D%20%20%2B%207x%20%2B%206%20%3D%200)
The answer should be B
Ok 30min:120 min
= divided both by 30
~ gives you 1:4
Answer:
I think my answer is
C. 15/2
The number that you are trying to find is 5
Answer: 475
Step-by-step explanation: