Answer:
C
Step-by-step explanation:
<span>Remember that it's against our guidelines to copy content from other websites, books or any other material to which you don't own the rights to. We know you have the power to solve these problems on your own</span>
Answer:
its c
ududhsihsisbishsusbusvsusbusbduusususuuusueuieieiejejdhebteybybeybsbysyneybdyndybbydbyeynydnnydndyjdyj8ggnxr
Step-by-step explanation:
fhjfjjgcmhmhcxmgkhfkhffhkhfkgfoyfkyftfutdutxjtxoyf
<em>Answer: h = 120 ft; w = 80 ft </em>
<em></em>
<em>A = 9600 ft^2</em>
<em />
<em>Step-by-step explanation: Let h and w be the dimensions of the playground. The area is given by:</em>
<em></em>
<em>A = h*w (eq1)</em>
<em></em>
<em>The total amount of fence used is:</em>
<em></em>
<em>L = 2*h + 2*w + w (eq2) (an extra distance w beacuse of the division)</em>
<em></em>
<em>Solving for w:</em>
<em></em>
<em>w = L - 2/3*h = 480 - 2/3*h (eq3) Replacing this into the area eq:</em>
<em></em>
<em></em>
<em></em>
<em>We derive this and equal zero to find its maximum:</em>
<em></em>
<em> Solving for h:</em>
<em></em>
<em>h = 120 ft. Replacing this into eq3:</em>
<em></em>
<em>w = 80ft</em>
<em></em>
<em>Therefore the maximum area is:</em>
<em></em>
<em>A = 9600 ft^2</em>
<em />
Answer:
0.6
Step-by-step explanation: