Hi,
Answer: B) 25.82%
<u>My work:</u> For this problem you can easily achieve this problem (Preferably with a caculator) by taking the date’s 2014 and 1969 the time of growth and subtract them. When you do this you get the answer 45. From there you you take 45 (With caculator) and multiply it with 25.82 % (To do this you take 25.82 and press 2nd, then the percent). When you do this you get 11.619 which rounded is 12; furthermore, which is your answer.
I Hope I Helped!
Positive, negative, or opposites
Answer:
False
Step-by-step explanation:
Lines that intersect at right angles are called parallel. False
They are called intersecting lines.
If the coefficient matrix has a pivot in each column, it means that it is shaped like this:
![A=\left[\begin{array}{cccc}a_{1,1}&a_{1,2}&a_{1,3}&a_{1,4}\\0&a_{2,2}&a_{2,3}&a_{2,4}\\0&0&a_{3,3}&a_{3,4}\\0&0&0&a_{4,4}\end{array}\right]](https://tex.z-dn.net/?f=A%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bcccc%7Da_%7B1%2C1%7D%26a_%7B1%2C2%7D%26a_%7B1%2C3%7D%26a_%7B1%2C4%7D%5C%5C0%26a_%7B2%2C2%7D%26a_%7B2%2C3%7D%26a_%7B2%2C4%7D%5C%5C0%260%26a_%7B3%2C3%7D%26a_%7B3%2C4%7D%5C%5C0%260%260%26a_%7B4%2C4%7D%5Cend%7Barray%7D%5Cright%5D)
So, the correspondant system

will look like this:
![\left[\begin{array}{cccc}a_{1,1}&a_{1,2}&a_{1,3}&a_{1,4}\\0&a_{2,2}&a_{2,3}&a_{2,4}\\0&0&a_{3,3}&a_{3,4}\\0&0&0&a_{4,4}\end{array}\right]\cdot \left[\begin{array}{c}x_1\\x_2\\x_3\\x_4\end{array}\right] = \left[\begin{array}{c}b_1\\b_2\\b_3\\b_4\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bcccc%7Da_%7B1%2C1%7D%26a_%7B1%2C2%7D%26a_%7B1%2C3%7D%26a_%7B1%2C4%7D%5C%5C0%26a_%7B2%2C2%7D%26a_%7B2%2C3%7D%26a_%7B2%2C4%7D%5C%5C0%260%26a_%7B3%2C3%7D%26a_%7B3%2C4%7D%5C%5C0%260%260%26a_%7B4%2C4%7D%5Cend%7Barray%7D%5Cright%5D%5Ccdot%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%7Dx_1%5C%5Cx_2%5C%5Cx_3%5C%5Cx_4%5Cend%7Barray%7D%5Cright%5D%20%3D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%7Db_1%5C%5Cb_2%5C%5Cb_3%5C%5Cb_4%5Cend%7Barray%7D%5Cright%5D)
This turn into the following system of equations:

The last equation is solvable for
: we easily have

Once the value for
is known, we can solve the third equation for
:

(recall that
is now known)
The pattern should be clear: you can use the last equation to solve for
. Once it is known, the third equation involves the only variable
. Once
Answer:
9 and 8, 12 and 6, 18 and 4, 24 and 3, 36 and 2
Step-by-step explanation:
.-.