1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Len [333]
2 years ago
5

What is the value of 43.7891​

Mathematics
2 answers:
sergeinik [125]2 years ago
4 0
Hiiiiu yuhhhh I’m bored
tankabanditka [31]2 years ago
3 0

Answer:

the value of 43.7891 will obviously be 43.7891

You might be interested in
A security alarm requires a four-digit code. The code can use the digits 0–9 and the digits cannot be repeated. What is the appr
Shkiper50 [21]
The approximate probability that the code only contains odd numbers is 0.02381.
3 0
3 years ago
Read 2 more answers
Help me pls i don’t know the answer
sleet_krkn [62]

Answer:

D

Step-by-step explanation:

10 \log( \frac{106.8}{1 \times  {10}^{ - 12} } ) \approx 140

8 0
1 year ago
Read 2 more answers
Help what’s the answer
Tom [10]
The answer is 474 i believe
7 0
3 years ago
What is 10 to the negative 8 power
raketka [301]

Answer:

0.000000001

Hope This Helps!  Have A Nice Day!!

5 0
3 years ago
The heights of men in a certain population follow a normal distribution with mean 69.7 inches and standard deviation 2.8 inches.
Mama L [17]

Answer:

a) P(Y > 76) = 0.0122

b) i) P(both of them will be more than 76 inches tall) = 0.00015

   ii) P(Y > 76) = 0.0007

Step-by-step explanation:

Given - The heights of men in a certain population follow a normal distribution with mean 69.7 inches and standard deviation 2.8 inches.

To find - (a) If a man is chosen at random from the population, find

                    the probability that he will be more than 76 inches tall.

              (b) If two men are chosen at random from the population, find

                    the probability that

                    (i) both of them will be more than 76 inches tall;

                    (ii) their mean height will be more than 76 inches.

Proof -

a)

P(Y > 76) = P(Y - mean > 76 - mean)

                 = P( \frac{( Y- mean)}{S.D}) > \frac{( 76- mean)}{S.D})

                 = P(Z >  \frac{( 76- mean)}{S.D})

                 = P(Z > \frac{76 - 69.7}{2.8})

                 = P(Z > 2.25)

                 = 1 - P(Z  ≤ 2.25)

                 = 0.0122

⇒P(Y > 76) = 0.0122

b)

(i)

P(both of them will be more than 76 inches tall) = (0.0122)²

                                                                           = 0.00015

⇒P(both of them will be more than 76 inches tall) = 0.00015

(ii)

Given that,

Mean = 69.7,

\frac{S.D}{\sqrt{N} } = 1.979899,

Now,

P(Y > 76) = P(Y - mean > 76 - mean)

                 = P( \frac{( Y- mean)}{\frac{S.D}{\sqrt{N} } })) > \frac{( 76- mean)}{\frac{S.D}{\sqrt{N} } })

                 = P(Z > \frac{( 76- mean)}{\frac{S.D}{\sqrt{N} } })

                 = P(Z > \frac{( 76- 69.7)}{1.979899 }))

                 = P(Z > 3.182)

                 = 1 - P(Z ≤ 3.182)

                 = 0.0007

⇒P(Y > 76) = 0.0007

6 0
3 years ago
Other questions:
  • Prove that: –7 is not the arithmetic square root of 49
    13·1 answer
  • I’m confused on this one
    6·1 answer
  • I need help any information is helping:)
    13·1 answer
  • Y = (x) = (1/9)^x<br> Find f(x) when x = (1/2)<br> Round your answer to the nearest thousandth.
    11·1 answer
  • Which of the following options correctly represents the complete factored
    13·1 answer
  • Which of the following are equivalent to 4+(14 - 2)
    9·1 answer
  • 6w^2 + 11w +8w^2 + 15w -2 and 14w^2 +26w-2 are the equivalent ​
    7·1 answer
  • Find all solutions to 6x^4+13x^3–71x^2+67x=15​
    9·1 answer
  • Factor 5x - 15<br><br> factor -8x - 40
    11·1 answer
  • 2. Three times some number, decreased by five is no less than 16.
    6·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!