1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
sveticcg [70]
3 years ago
12

Please help with mathimatics

Mathematics
1 answer:
Burka [1]3 years ago
4 0
The picture isn’t showing
You might be interested in
Which are the roots of the quadratic function f(q) = q2 – 125?
qwelly [4]
The solutions to q² - 125 = 0 are q = ±√125.
  q = -5√5
  q = 5√5
4 0
3 years ago
Every week, Hector’s 20 hours earns $210.00. He earns a constant amount of money per hour.
lesantik [10]

Answer: 20 weeks in 1 week

in 2 weeks 40

Step-by-step explanation:

This proves that the equation is true

3 0
3 years ago
The Polygons are similar. Find the value of x. ​
ollegr [7]

Answer:

13

Step-by-step explanation:

8/2=16/4

=4

x-3=2.5*4

x=10+3

x=13

8 0
3 years ago
Read 2 more answers
Match each vector operation with its resultant vector expressed as a linear combination of the unit vectors i and j.
Cloud [144]

Answer:

3u - 2v + w = 69i + 19j.

8u - 6v = 184i + 60j.

7v - 4w = -128i + 62j.

u - 5w = -9i + 37j.

Step-by-step explanation:

Note that there are multiple ways to denote a vector. For example, vector u can be written either in bold typeface "u" or with an arrow above it \vec{u}. This explanation uses both representations.

\displaystyle \vec{u} = \langle 11, 12\rangle =\left(\begin{array}{c}11 \\12\end{array}\right).

\displaystyle \vec{v} = \langle -16, 6\rangle= \left(\begin{array}{c}-16 \\6\end{array}\right).

\displaystyle \vec{w} = \langle 4, -5\rangle=\left(\begin{array}{c}4 \\-5\end{array}\right).

There are two components in each of the three vectors. For example, in vector u, the first component is 11 and the second is 12. When multiplying a vector with a constant, multiply each component by the constant. For example,

3\;\vec{v} = 3\;\left(\begin{array}{c}11 \\12\end{array}\right) = \left(\begin{array}{c}3\times 11 \\3 \times 12\end{array}\right) = \left(\begin{array}{c}33 \\36\end{array}\right).

So is the case when the constant is negative:

-2\;\vec{v} = (-2)\; \left(\begin{array}{c}-16 \\6\end{array}\right) =\left(\begin{array}{c}(-2) \times (-16) \\(-2)\times(-6)\end{array}\right) = \left(\begin{array}{c}32 \\12\end{array}\right).

When adding two vectors, add the corresponding components (this phrase comes from Wolfram Mathworld) of each vector. In other words, add the number on the same row to each other. For example, when adding 3u to (-2)v,

3\;\vec{u} + (-2)\;\vec{v} = \left(\begin{array}{c}33 \\36\end{array}\right) + \left(\begin{array}{c}32 \\12\end{array}\right) = \left(\begin{array}{c}33 + 32 \\36+12\end{array}\right) = \left(\begin{array}{c}65\\48\end{array}\right).

Apply the two rules for the four vector operations.

<h3>1.</h3>

\displaystyle \begin{aligned}3\;\vec{u} - 2\;\vec{v} + \vec{w} &= 3\;\left(\begin{array}{c}11 \\12\end{array}\right) + (-2)\;\left(\begin{array}{c}-16 \\6\end{array}\right) + \left(\begin{array}{c}4 \\-5\end{array}\right)\\&= \left(\begin{array}{c}3\times 11 + (-2)\times (-16) + 4\\ 3\times 12 + (-2)\times 6 + (-5) \end{array}\right)\\&=\left(\begin{array}{c}69\\19\end{array}\right) = \langle 69, 19\rangle\end{aligned}

Rewrite this vector as a linear combination of two unit vectors. The first component 69 will be the coefficient in front of the first unit vector, i. The second component 19 will be the coefficient in front of the second unit vector, j.

\displaystyle \left(\begin{array}{c}69\\19\end{array}\right) = \langle 69, 19\rangle = 69\;\vec{i} + 19\;\vec{j}.

<h3>2.</h3>

\displaystyle \begin{aligned}8\;\vec{u} - 6\;\vec{v} &= 8\;\left(\begin{array}{c}11\\12\end{array}\right) + (-6) \;\left(\begin{array}{c}-16\\6\end{array}\right)\\&=\left(\begin{array}{c}88+96\\96 - 36\end{array}\right)\\&= \left(\begin{array}{c}184\\60\end{array}\right)= \langle 184, 60\rangle\\&=184\;\vec{i} + 60\;\vec{j} \end{aligned}.

<h3>3.</h3>

\displaystyle \begin{aligned}7\;\vec{v} - 4\;\vec{w} &= 7\;\left(\begin{array}{c}-16\\6\end{array}\right) + (-4) \;\left(\begin{array}{c}4\\-5\end{array}\right)\\&=\left(\begin{array}{c}-112 - 16\\42+20\end{array}\right)\\&= \left(\begin{array}{c}-128\\62\end{array}\right)= \langle -128, 62\rangle\\&=-128\;\vec{i} + 62\;\vec{j} \end{aligned}.

<h3>4.</h3>

\displaystyle \begin{aligned}\;\vec{u} - 5\;\vec{w} &= \left(\begin{array}{c}11\\12\end{array}\right) + (-5) \;\left(\begin{array}{c}4\\-5\end{array}\right)\\&=\left(\begin{array}{c}11-20\\12+25\end{array}\right)\\&= \left(\begin{array}{c}-9\\37\end{array}\right)= \langle -9, 37\rangle\\&=-9\;\vec{i} + 37\;\vec{j} \end{aligned}.

7 0
3 years ago
£2000 is invested in a bank with 3% interest per annum. work out the amount of money in the account after 2 years
irina [24]

Answer:

The interest is: $120.00 +2000

Step-by-step explanation:

7 0
3 years ago
Other questions:
  • What goes into the square root of 96?
    12·2 answers
  • Cuál es el área de superficie de una esfera con un diámetro de 10 mm ? Redondea al número entero más próximo
    9·1 answer
  • How do you solve for b1 <br><br> A=1/2h(b1+b2)
    7·1 answer
  • What is the value of the expression |x| + |y + z| when x = –6, y = –3, and z = –5?
    11·1 answer
  • What type of solution does the system of linear equations have?
    13·2 answers
  • Solve Sine inverse x +sine inverse 2x = π/3 <br> Please solve it faster..
    5·1 answer
  • Help please ............
    6·1 answer
  • The null hypothesis for an ANOVA is that all treatments/samples come from populations with the same mean. The alternative hypoth
    11·1 answer
  • The numeral 16 is a _____ of 4 because it is the product of a given number sbd any whole number
    15·1 answer
  • Problem 8) In the diagram, RQ ⊥ PQ, m∠QPS = 32°, m∠RPS = 24°, and PQ = 14.Find RS to the nearest tenth of a unit. Image is provi
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!