<h3><u>Question:</u></h3>
Serena uses chalk to draw a straight line on the sidewalk. The line is 1/2 ft long. She wants to divide the line into sections that are each 1/8 ft long. How many sections will the line be divided into?
<h3><u>Answer:</u></h3>
The number of sections that the line is divided is 4
<h3><u>Solution:</u></h3>
Given that, Serena uses chalk to draw a straight line on the sidewalk
The line is 1/2 ft long. She wants to divide the line into sections that are each 1/8 ft long
From given,

To find: Number of sections can be made
The number of sections that can be made is found by dividing the total length of line by length of each section

Substituting the values, we get,

Thus number of sections that the line is divided is 4
The answers are in the picture
Have agreat day
Answer:
<h2>30k - 50</h2><h2 />
Step-by-step explanation:
-5 (-6k + 10)
= 30k - 50
Answer:
7/1 - 7/1 + 17/1 = 17
Step-by-step explanation:
Create an equation using the formula for area of a rectangle; area = width * length
(X + 2)(x + 3) = 600
Multiply the dimensions.
X^2 + 3x + 2x +6 = 600, or simplified x^2 +5x + 6 = 600.
Subtract 600 to get the following:
X^2 + 5x - 594 = 0
Factor by x:
(X - 22)(x + 27) = 0
Solve for x
X - 22 = 0
X = 22.
Use the POSITIVE VALUE of x as you can’t have a negative area for a room.
Then substitute 22 for x to get the dimensions
(22+ 2) or 24 for length and (22+3) or 25 for width.