Assuming this is the equation you want to operate on:



Before final operation we have to assume that x is not equal to 0. :)
Answer:
your answer should be 0.96
Step-by-step explanation:
Answer:
odd: 4/7
not 3: 6/7
4 or 5: 2/7
spinner spun 2: there both 1/7 i think im
only in 7th grade ;-;
Step-by-step explanation: well there are 7 spaces so the probabilty
of it landing on an odd space on the wheel is how many odd numbers there are over 7 . and there is only 1 three so the chance that it will not land on 3 is 6/7. there is a 2/7 chance it will land on 4 or 5. and im not to sure abt the last one but like i said im only in the 7th grade i am taking p classes tho so the rest should be right. :D
Answer:
x = 2
Step-by-step explanation:
These equations are solved easily using a graphing calculator. The attachment shows the one solution is x=2.
__
<h3>Squaring</h3>
The usual way to solve these algebraically is to isolate radicals and square the equation until the radicals go away. Then solve the resulting polynomial. Here, that results in a quadratic with two solutions. One of those is extraneous, as is often the case when this solution method is used.

The solutions to this equation are the values of x that make the factors zero: x=2 and x=-1. When we check these in the original equation, we find that x=-1 does not work. It is an extraneous solution.
x = -1: √(-1+2) +1 = √(3(-1)+3) ⇒ 1+1 = 0 . . . . not true
x = 2: √(2+2) +1 = √(3(2) +3) ⇒ 2 +1 = 3 . . . . true . . . x = 2 is the solution
__
<h3>Substitution</h3>
Another way to solve this is using substitution for one of the radicals. We choose ...

Solutions to this equation are ...
u = 2, u = -1 . . . . . . the above restriction on u mean u=-1 is not a solution
The value of x is ...
x = u² -2 = 2² -2
x = 2 . . . . the solution to the equation
_____
<em>Additional comment</em>
Using substitution may be a little more work, as you have to solve for x in terms of the substituted variable. It still requires two squarings: one to find the value of x in terms of u, and another to eliminate the remaining radical. The advantage seems to be that the extraneous solution is made more obvious by the restriction on the value of u.
Answer:
(B) A location
Step-by-step explanation:
If you have a point on a graph or number line, it always represents a certain location on the graph.
For instance, if we have a point on the x=3 line and the y=4 line, the point would represent the location (3,4).
Hope this helped!