Answer:
14
Step-by-step explanation:
1*1= 1 * 14 (14 sides showing)
X=time of the third person it would take to fill the pool
We can suggest this equation:
6[(1/20) + (1/15) +(1/x)]=1
6[(3x+4x+60)/60x]=1
(7x+60)/10x=1
7x+60=10x
7x-10x=-60
-3x=-60
x=-60/-3
x=20
Answer: the third person alone would fill the pool in 20 hours .
6
I GUESSING BRO I AINT GOT TIME FOR THAT B
<h3>Answer: 6pi radians</h3>
(this is equivalent to 1080 degrees)
======================================
Explanation:
f(x) = sin(x/3)
is the same as
f(x) = 1*sin( (1/3)(x-0) )+0
and that is in the form
f(x) = A*sin( B(x-C) )+D
The letters A,B,C,D are explained below
A = helps find the amplitude
B = 2pi/T, where T is the period
C = determines phase shift (aka left/right shifting)
D = determines vertical shift = midline
All we care about is the value of B as that is the only thing that is connected to the period T
--------
Compare f(x) = 1*sin( (1/3)(x-0) )+0 with f(x) = A*sin( B(x-C) )+D and we see that B = 1/3, so,
B = 2pi/T
1/3 = 2pi/T
1*T = 3*2pi ... cross multiply
T = 6pi
The period is 6pi radians. This is equivalent to 1080 degrees. To convert from radians to degrees, you multiply by (180/pi).
Answer:
√(p²-4q)
Step-by-step explanation:
Using the Quadratic Formula, we can say that
x = ( -p ± √(p²-4(1)(q))) / 2(1) with the 1 representing the coefficient of x². Simplifying, we get
x = ( -p ± √(p²-4q)) / 2
The roots of the function are therefore at
x = ( -p + √(p²-4q)) / 2 and x = ( -p - √(p²-4q)) / 2. The difference of the roots is thus
( -p + √(p²-4q)) / 2 - ( ( -p - √(p²-4q)) / 2)
= 0 + 2 √(p²-4q)/2
= √(p²-4q)