Answer:
Step-by-step explanation:
Given that the demand for the 6 p.m. flight from Toledo Express Airport to Chicago's O'Hare Airport on Cheapfare Airlines is normally distributed with a mean of 132 passengers and a standard deviation of 42
Let X be the no of passengers who report
X is N(132, 42)
Or Z is 
a) Suppose a Boeing 757 with a capacity of 183 passengers is assigned to this flight.
the probability that the demand will exceed the capacity of this airplane
=

b) the probability that the demand for this flight will be at least 80 passengers but no more than 200 passengers
=
=0.4474+0.3907
=0.8381
c) the probability that the demand for this flight will be less than 100 passengers

d) If Cheapfare Airlines wants to limit the probability that this flight is overbooked to 3%, how much capacity should the airplane that is used for this flight have? passengers
=
e) 79th percentile of this distribution
=
Answer:
1.
-3x + 8y = -5
6x + 2y = -8
Set the equations to a common variable.
-3x + 8y = -5 → 8y = 3x - 5 → y = 3/8x - 5/8
6x + 2y = -8 → 2y = -6x - 8 → y = -3x - 4
Set the equations equal to each other.
3/8x - 5/8 = -3x - 4
Combine like terms.
3x + 3/8x = -4 + 5/8
3.375x = -3.375
Divide by 3.375
x = -1
Plug x back in to find y.
-3x + 8y = -5
-3(-1) + 8y = -5
3 + 8y = -5
8y = -8
y = -1
answer: (-1, -1)
2.
3x + 2y = -16
-3x - 8y = 46
Set the equations to a common variable.
3x + 2y = -16 → 2y = -3x - 16 → y = -3/2x - 8
-3x - 8y = 46 → -8y = 3x + 46 → y = -3/8x - 23/4
Set the equations equal to each other.
-3/2x - 8 = -3/8x - 23/4
Combine like terms.
-9/8x = 9/4
or
-1.125x = 2.25
Divide by -1.125
x = -2
Plug x back in to find y.
3(-2) + 2y = -16
-6 + 2y = -16
2y = -10
y = -5
answer: (-2, -5)
It was located in Canberra
Answer:
The cost of the car is $ RS 308,000.
Step-by-step explanation:
Given that the value of a car is deprecting at the rate of 12%, to find the correct value of car when cost of car was $ RS350,000 last year, the following mathematical calculation must be performed:
100 - 12 = 88
88/100 = 0.88
350,000 x 0.88 = X
308,000 = X
Therefore, the cost of the car is $ RS 308,000.