Its 2x^2-4x, to check it add it to 3x^2-2x or
2x^(2)-4x+3x^(2)-2x
Answer:
Here,
n(A)={0,1,3,5,6}
n(B)={1,2,3,7}
n(AUB)=?
we know that,
AUB={0,1,2,3,5,6,7}
Step-by-step explanation:
is it okay ?
hopefully it works <3 ❣️
Answer:
minimum: 80 zeds
maximum: 137 zeds
Step-by-step explanation:
minimum price is where you choose all the cheapest options
lowest deck price is 40, lowest wheel set price is 14...
40+14+16+10
=40+30+10
=80
maximum price is where you choose all the most expensive options
highest deck is 65, highest price of wheels are 36, hardware 20
65+36+16+20
=65+72
=137
Answer:
About 4.
Step-by-step explanation:
It is actaully 3.95 but if you were rounding and in fraction form, it would be four! Hope this helps!
Hey ! there
Answer:
- <u>1</u><u>1</u><u>3</u><u>.</u><u>0</u><u>4</u><u> </u><u>unit </u><u>cube</u>
Step-by-step explanation:
In this question we are provided with a sphere <u>having</u><u> </u><u>radius </u><u>3 </u><u>units </u>and <u>value </u><u>of </u><u>π </u><u>is </u><u>3.</u><u>1</u><u>4</u><u> </u><u>.</u><u> </u>And we're asked to find the<u> </u><u>volume</u><u> of</u><u> </u><u>sphere</u><u> </u><u>.</u>
For finding volume of sphere , we need to know its formula . So ,
![\qquad \qquad \: \underline{\boxed{ \frak{Volume_{(Sphere)} = \dfrac{4}{3} \pi r {}^{3} }}}](https://tex.z-dn.net/?f=%20%5Cqquad%20%5Cqquad%20%5C%3A%20%5Cunderline%7B%5Cboxed%7B%20%5Cfrak%7BVolume_%7B%28Sphere%29%7D%20%3D%20%20%5Cdfrac%7B4%7D%7B3%7D%20%5Cpi%20r%20%7B%7D%5E%7B3%7D%20%7D%7D%7D)
<u>Where</u><u> </u><u>,</u>
- π refers to <u>3.</u><u>1</u><u>4</u>
- r refers to <u>radius</u><u> of</u><u> sphere</u>
<u>Sol</u><u>u</u><u>tion </u><u>:</u><u> </u><u>-</u>
Now , we are substituting value of π and radius in the formula ,
![\quad \longrightarrow \qquad \: \dfrac{4}{3} \times 3.14 \times (3) {}^{3}](https://tex.z-dn.net/?f=%20%5Cquad%20%5Clongrightarrow%20%5Cqquad%20%5C%3A%20%5Cdfrac%7B4%7D%7B3%7D%20%20%20%5Ctimes%203.14%20%5Ctimes%20%283%29%20%7B%7D%5E%7B3%7D%20)
Simplifying it ,
![\quad \longrightarrow \qquad \: \dfrac{4}{3} \times 3.14 \times 3 \times 3 \times 3](https://tex.z-dn.net/?f=%20%5Cquad%20%5Clongrightarrow%20%5Cqquad%20%5C%3A%20%5Cdfrac%7B4%7D%7B3%7D%20%20%5Ctimes%203.14%20%5Ctimes%203%20%5Ctimes%203%20%5Ctimes%203)
Cancelling 3 with 3 :
![\quad \longrightarrow \qquad \: \dfrac{4}{ \cancel{3}} \times 3.14 \times 3 \times 3 \times \cancel{3}](https://tex.z-dn.net/?f=%20%5Cquad%20%5Clongrightarrow%20%5Cqquad%20%5C%3A%20%5Cdfrac%7B4%7D%7B%20%5Ccancel%7B3%7D%7D%20%20%5Ctimes%203.14%20%5Ctimes%203%20%5Ctimes%203%20%5Ctimes%20%20%5Ccancel%7B3%7D)
We get ,
![\quad \longrightarrow \qquad \:4 \times 3.14 \times 9](https://tex.z-dn.net/?f=%20%5Cquad%20%5Clongrightarrow%20%5Cqquad%20%5C%3A4%20%5Ctimes%203.14%20%5Ctimes%209)
Multiplying 4 and 3.14 :
![\quad \longrightarrow \qquad \:12.56 \times 9](https://tex.z-dn.net/?f=%20%5Cquad%20%5Clongrightarrow%20%5Cqquad%20%5C%3A12.56%20%5Ctimes%209)
Multiplying 12.56 and 9 :
![\quad \longrightarrow \qquad \: \pink{\underline{\boxed{\frak{113.04 \: unit \: cube}}}} \quad \bigstar](https://tex.z-dn.net/?f=%20%5Cquad%20%5Clongrightarrow%20%5Cqquad%20%5C%3A%20%20%20%20%5Cpink%7B%5Cunderline%7B%5Cboxed%7B%5Cfrak%7B113.04%20%20%5C%3A%20unit%20%5C%3A%20cube%7D%7D%7D%7D%20%5Cquad%20%5Cbigstar)
- <u>Henceforth</u><u> </u><u>,</u><u> </u><u>volume</u><u> </u><u>of</u><u> </u><u>sphere</u><u> </u><u>having </u><u>radius </u><u>3 </u><u>units </u><u>is </u><em><u>1</u></em><em><u>1</u></em><em><u>3</u></em><em><u> </u></em><em><u>.</u></em><em><u>0</u></em><em><u>4</u></em><em><u> </u></em><em><u>units </u></em><em><u>cube </u></em><em><u>.</u></em>
<h2>
<u>#</u><u>K</u><u>e</u><u>e</u><u>p</u><u> </u><u>Learning</u></h2>