Although glycolysis produces four molecules of atp by substrate-level phosphorylation, the net gain of atp for the cell is two molecules. This is because glycolysis is at first endergonic.
<h3>
What is glycolysis?</h3>
- The metabolic process that turns glucose into pyruvic acid is known as glycolysis.
- The high-energy molecules adenosine triphosphate and reduced nicotinamide adenine dinucleotide are created using the free energy released during this process.
- A series of ten enzyme-catalyzed processes make up glycolysis.
- The process by which glucose is broken down to provide energy is known as glycolysis.
- It generates two pyruvate molecules, ATP, NADH, and water.
- There is no need for oxygen throughout the process, which occurs in the cytoplasm of a cell.
- Both aerobic and anaerobic creatures experience it.
- The initial process in breaking down glucose to release energy for cellular metabolism is called glycolysis.
- An energy-consuming phase and an energy-releasing phase make up glycolysis.
Learn more about glycolysis here:
brainly.com/question/1966268
#SPJ4
Decomposer. Hope it helps!
Answer:
<u>-blue and red light</u>
Explanation:
Plants produce sugars or carbohydrates during the process of photosynthesis. They absorb light energy from the electromagnetic spectrum with pigments within the thylakoid membrane, like chlorophyll a, chlorophyll b.
Chlorophylls are made of ringed molecules chlorine, a hydrogenated form of porphyrin with a magnesium ion bonded to four atoms of nitrogen. Chlorophyll a shows the most absorption of red light (642 nm) and blue light (372 nm); while chlorophyll b shows the most absorption at 626 nm and 392 nm.
Different types of chlorophyll sidechains change the molecules' absorption ranges; A's methyl group is bound at carbon 7, B's aldehyde (CHO) ring is bound at carbon 7. Both absorb light from orange-red and violet-blue wavelengths. As such, the best light wavelengths for photosynthesis are within the blue and red wavelengths (425–450 nm) and (600–700 nm).
<h3>In general,the more massive a star is,the shorter it's life span on the main sequence.After the hydrogen fuel at the core has been consumed,the star evolves away from the main sequence on the HR diagram,into a supergiant,red giant,or directly to a white dwarf.</h3>
<h2>--SirGerick--</h2>
<span>The answer would be Cell specialization</span>