In this question, the Poisson distribution is used.
Poisson distribution:
In a Poisson distribution, the probability that X represents the number of successes of a random variable is given by the following formula:
In which
x is the number of sucesses
e = 2.71828 is the Euler number
is the mean in the given interval.
Parameter of 5.2 per square yard:
This means that
, in which r is the radius.
How large should the radius R of a circular sampling region be taken so that the probability of finding at least one in the region equals 0.99?
We want:

Thus:

We have that:


Then





Thus, the radius should be of at least 0.89.
Another example of a Poisson distribution is found at brainly.com/question/24098004
Answer:
C) As x approaches positive infinity, f(x) approaches positive infinity
Step-by-step explanation:
- The domain is NOT all real numbers as x is either smaller than or bigger than 0, and smaller than or bigger than 2. So x ≠ 0 and x ≠ 2.
- This implies that there are asymptotes at x=0 and x=2.
Therefore, the function is NOT continuous.
- The function is NOT increasing over its entire domain as
f(x) = -x² -4x + 1 is decreasing for its given domain of 0<x<2
A right triangle has a 90degree angle