Answer:
Mean : 95
Median : 85
Mode : 90
Part B : Impossible
Step-by-step explanation:
We can make an equation to find the mean using the first 5 history test scores.

So a 95 would be needed to have a mean of 85.
Next, the median.
First, we sort the first 5 history scores from least to greatest.
We get 75, 75, 80, 90, 95.
Since, 80 is the middle value, it will be used in the calculation of the median.
We can make an equation with this.

So a score a 85 would be needed to have a median of 82.5
Thirdly, the mode.
Since 90 is already in the set once, we can just have Maliah score another 90 to make 90 the mode (with the exception of 75 of course).
Finally, Part B.
We can use the equation we had for the first mean calculation but change 85 to 90.

So Maliah would need a score of 125 to make her mean score 90, but since the range is only from 0-100, it is impossible.
The answer is 36.86
(I think)
Let,
f(x) = -2x+34
g(x) = (-x/3) - 10
h(x) = -|3x|
k(x) = (x-2)^2
This is a trial and error type of problem (aka "guess and check"). There are 24 combinations to try out for each problem, so it might take a while. It turns out that
g(h(k(f(15)))) = -6
f(k(g(h(8)))) = 2
So the order for part A should be: f, k, h, g
The order for part B should be: h, g, k f
note how I'm working from the right and moving left (working inside and moving out).
Here's proof of both claims
-----------------------------------------
Proof of Claim 1:
f(x) = -2x+34
f(15) = -2(15)+34
f(15) = 4
-----------------
k(x) = (x-2)^2
k(f(15)) = (f(15)-2)^2
k(f(15)) = (4-2)^2
k(f(15)) = 4
-----------------
h(x) = -|3x|
h(k(f(15))) = -|3*k(f(15))|
h(k(f(15))) = -|3*4|
h(k(f(15))) = -12
-----------------
g(x) = (-x/3) - 10
g(h(k(f(15))) ) = (-h(k(f(15))) /3) - 10
g(h(k(f(15))) ) = (-(-12) /3) - 10
g(h(k(f(15))) ) = -6
-----------------------------------------
Proof of Claim 2:
h(x) = -|3x|
h(8) = -|3*8|
h(8) = -24
---------------
g(x) = (-x/3) - 10
g(h(8)) = (-h(8)/3) - 10
g(h(8)) = (-(-24)/3) - 10
g(h(8)) = -2
---------------
k(x) = (x-2)^2
k(g(h(8))) = (g(h(8))-2)^2
k(g(h(8))) = (-2-2)^2
k(g(h(8))) = 16
---------------
f(x) = -2x+34
f(k(g(h(8))) ) = -2*(k(g(h(8))) )+34
f(k(g(h(8))) ) = -2*(16)+34
f(k(g(h(8))) ) = 2
Answer:
105°
Step-by-step explanation:
11x-5 + 6x+5 + x = 180
18x = 180
x = 10
m∠Q = 11(10)-5 = 110-5 = 105°