As there are no answer choices, I'm going to answer this just based off my knowledge
Analogous structures suggest convergent evolution because they have both evolved from a set of species but for different reasons and from different causes.
Convection currents, C! The plates move in a cycle called a convection cell that forms when warm material rise, cool, and even sink.
All evolutionary changes that allow a species to change in response to the environment, are originally a result of beneficial DNA mutations.
Beneficial genetic (DNA) mutations are result in individuals with special characteristics that allow them to survive better in the environment so they pass their genes to the next generation.
Here's a fictional example I made just for you!: Lets say you have an alien species called Hibas. They are jelly blobs that float around, don't move, and open their mouths to capture neon shrimps that happen to swim into their mouths. But one day a certain Hiba developed some muscles through a genetic mutation. It was able to "wiggle" through the water and steer itself instead of floating around. This allowed it to eat more neon shrimp than the other Hibas, so it grew faster and was able to reproduce faster. It's kids also had muscles and had an advantage so they reproduced faster then the other Hibas. Eventually the whole Hiba species started to have muscles because the ones that didn't weren't able to compete and did not survive as well.
The reason that most of the Hibas developed muscles was because one of them had a mutation that allowed it to have muscles. This was a BENEFICIAL mutation that allowed it to SURVIVE BETTER.
Answer:
isometric contraction
Explanation:
Isometric contraction is a class of contraction where the muscle maintains a constant length as tension is produced, thereby the length of the muscles does not change during this process. Isometric contractions are performed without joint motion. They are appropriate for the rehabilitation of musculotendinous traumas due the muscle maintains a static position and contraction intensity can be controlled. This type of contraction is common for the muscles in the hands and arms.
Chromatography is a simple technique in principle, it remains the most important method for the separation of mixtures into its components. It is quite versatile for it can be used to separate mixtures of solids.
Explanation:
- The two elements of chromatography are the stationary phase and the mobile phase. There are many choices of stationary phases, some being alumina, silica, and even paper. The mobile phase, in liquid chromatography, can also vary. It is often either a solvent or a mixture of solvents and is often referred to as the eluant.
- A careful choice of eluting solvent helps to make the separation more successful. The mixture is placed on the stationary phase. The eluant passes over the mixture and continues to pass through the stationary phase carrying along the components of the mixture.
- Chromatography is used in industrial processes to purify chemicals, test for trace amounts of substances, separate chiral compounds and test products for quality control. Chromatography is the physical process by which complex mixtures are separated or analyzed.
- Chromatography is based on the principle where molecules in mixture applied onto the surface or into the solid, and fluid stationary phase (stable phase) is separating from each other while moving with the aid of a mobile phase
