To calculate the distance between two points on the coordinate system you have to use the following formula:
![d=\sqrt[]{(x_1-x_2)^2+(y_1-y_2)^2}](https://tex.z-dn.net/?f=d%3D%5Csqrt%5B%5D%7B%28x_1-x_2%29%5E2%2B%28y_1-y_2%29%5E2%7D)
Where
d represents the distance between both points.
(x₁,y₁) are the coordinates of one of the points.
(x₂,y₂) are the coordinates of the second point.
To determine the length of CD, the first step is to determine the coordinates of both endpoints from the graph
C(2,-1)
D(-1,-2)
Replace the coordinates on the formula using C(2,-1) as (x₁,y₁) and D(-1,-2) as (x₂,y₂)
![\begin{gathered} d_{CD}=\sqrt[]{(2-(-1))^2+((-1)-(-2))}^2 \\ d_{CD}=\sqrt[]{(2+1)^2+(-1+2)^2} \\ d_{CD}=\sqrt[]{3^2+1^2} \\ d_{CD}=\sqrt[]{9+1} \\ d_{CD}=\sqrt[]{10} \end{gathered}](https://tex.z-dn.net/?f=%5Cbegin%7Bgathered%7D%20d_%7BCD%7D%3D%5Csqrt%5B%5D%7B%282-%28-1%29%29%5E2%2B%28%28-1%29-%28-2%29%29%7D%5E2%20%5C%5C%20d_%7BCD%7D%3D%5Csqrt%5B%5D%7B%282%2B1%29%5E2%2B%28-1%2B2%29%5E2%7D%20%5C%5C%20d_%7BCD%7D%3D%5Csqrt%5B%5D%7B3%5E2%2B1%5E2%7D%20%5C%5C%20d_%7BCD%7D%3D%5Csqrt%5B%5D%7B9%2B1%7D%20%5C%5C%20d_%7BCD%7D%3D%5Csqrt%5B%5D%7B10%7D%20%5Cend%7Bgathered%7D)
The length of CD is √10 units ≈ 3.16 units
When you cannot simplify it further. The terms have no common factor besides 1 and A plus C does not have two numbers that multiply to the total and equal C.
Answer:
1 1/2
Step-by-step explanation:
1 1/2 + 3 1/2 = 5
6 1/2 - 5 =1 1/2
The domain and range of the function is D) Domain: (-∞, ∞); Range: (-∞, ∞)
<h3>How to illustrate the information?</h3>
The domain is the input values, or the x values. We can put in any x values for this function.
Domain : (-∞, ∞)
The range is the output values or the y values. We can get any output values for this function
Range: (-∞, ∞)
Learn more about domain on:
brainly.com/question/2264373
#SPJ1
<u>Complete question:</u>
What are the domain and range of the function below?
A) Domain: (-∞, -5)
Range: (5, ∞)
B) Domain: (-5, -10)
Range: (5, 10)
C). Domain: (-5, 10)
Range: (-10, 5)
D) Domain: (-∞, ∞)
Range: (-∞, ∞)
Answer:
y=-2x-4
Step-by-step explanation: