9514 1404 393
Answer:
$74.67
Step-by-step explanation:
Let p represent the original price. Then the relation is ...
$56 = p - 0.25×p
$56 = 0.75p
$56/0.75 = p ≈ $74.67
The original price was $74.67.
well, the assumption is that is a rectangle, namely it has two equal pairs, so we can just find the length of one of the pairs to get the dimensions.
hmmmm let's say let's get the length of the segment at (-1,-3), (1,3) for its length
and
the length of the segment at (-1, -3), (-4, -2) for its width
![\bf ~~~~~~~~~~~~\textit{distance between 2 points} \\\\ (\stackrel{x_1}{-1}~,~\stackrel{y_1}{-3})\qquad (\stackrel{x_2}{1}~,~\stackrel{y_2}{3})\qquad \qquad d = \sqrt{( x_2- x_1)^2 + ( y_2- y_1)^2} \\\\\\ \stackrel{length}{L}=\sqrt{[1-(-1)]^2+[3-(-3)]^2}\implies L=\sqrt{(1+1)^2+(3+3)^2} \\\\\\ L=\sqrt{4+36}\implies L=\sqrt{40} \\\\[-0.35em] ~\dotfill](https://tex.z-dn.net/?f=%5Cbf%20~~~~~~~~~~~~%5Ctextit%7Bdistance%20between%202%20points%7D%20%5C%5C%5C%5C%20%28%5Cstackrel%7Bx_1%7D%7B-1%7D~%2C~%5Cstackrel%7By_1%7D%7B-3%7D%29%5Cqquad%20%28%5Cstackrel%7Bx_2%7D%7B1%7D~%2C~%5Cstackrel%7By_2%7D%7B3%7D%29%5Cqquad%20%5Cqquad%20d%20%3D%20%5Csqrt%7B%28%20x_2-%20x_1%29%5E2%20%2B%20%28%20y_2-%20y_1%29%5E2%7D%20%5C%5C%5C%5C%5C%5C%20%5Cstackrel%7Blength%7D%7BL%7D%3D%5Csqrt%7B%5B1-%28-1%29%5D%5E2%2B%5B3-%28-3%29%5D%5E2%7D%5Cimplies%20L%3D%5Csqrt%7B%281%2B1%29%5E2%2B%283%2B3%29%5E2%7D%20%5C%5C%5C%5C%5C%5C%20L%3D%5Csqrt%7B4%2B36%7D%5Cimplies%20L%3D%5Csqrt%7B40%7D%20%5C%5C%5C%5C%5B-0.35em%5D%20~%5Cdotfill)
![\bf (\stackrel{x_1}{-1}~,~\stackrel{y_1}{-3})\qquad (\stackrel{x_2}{-4}~,~\stackrel{y_2}{-2})\qquad \qquad d = \sqrt{( x_2- x_1)^2 + ( y_2- y_1)^2} \\\\\\ \stackrel{width}{w}=\sqrt{[-4-(-1)]^2+[-2-(-3)]^2}\implies w=\sqrt{(-4+1)^2+(-2+3)^2} \\\\\\ w=\sqrt{9+1}\implies w=\sqrt{10} \\\\[-0.35em] ~\dotfill\\\\ \stackrel{\textit{area of the rectangle}}{A=Lw}\implies \sqrt{40}\cdot \sqrt{10}\implies \sqrt{400}\implies \boxed{20}](https://tex.z-dn.net/?f=%5Cbf%20%28%5Cstackrel%7Bx_1%7D%7B-1%7D~%2C~%5Cstackrel%7By_1%7D%7B-3%7D%29%5Cqquad%20%28%5Cstackrel%7Bx_2%7D%7B-4%7D~%2C~%5Cstackrel%7By_2%7D%7B-2%7D%29%5Cqquad%20%5Cqquad%20d%20%3D%20%5Csqrt%7B%28%20x_2-%20x_1%29%5E2%20%2B%20%28%20y_2-%20y_1%29%5E2%7D%20%5C%5C%5C%5C%5C%5C%20%5Cstackrel%7Bwidth%7D%7Bw%7D%3D%5Csqrt%7B%5B-4-%28-1%29%5D%5E2%2B%5B-2-%28-3%29%5D%5E2%7D%5Cimplies%20w%3D%5Csqrt%7B%28-4%2B1%29%5E2%2B%28-2%2B3%29%5E2%7D%20%5C%5C%5C%5C%5C%5C%20w%3D%5Csqrt%7B9%2B1%7D%5Cimplies%20w%3D%5Csqrt%7B10%7D%20%5C%5C%5C%5C%5B-0.35em%5D%20~%5Cdotfill%5C%5C%5C%5C%20%5Cstackrel%7B%5Ctextit%7Barea%20of%20the%20rectangle%7D%7D%7BA%3DLw%7D%5Cimplies%20%5Csqrt%7B40%7D%5Ccdot%20%5Csqrt%7B10%7D%5Cimplies%20%5Csqrt%7B400%7D%5Cimplies%20%5Cboxed%7B20%7D)
Answer: 
Step-by-step explanation:
The complete exercise is: "The circumference of a circle is 47.1 and the diameter of the circle is 15. Which best represents the value of π? "
In order to solve this exercise, it is important to remember that the circle can be calculated with the following formulas:
1. 
Where "C" is the circumference of the circle and "D" is the diameter of the circle.
2. 
Where "C" is the circumference of the circle and "r" is the radius of the circle (Remeber that the diameter is twice the radius).
In this case, the exercise gives you the circumference of the circle and its diameter. These are:

Then, knowing those values, you can substitute them s into the first equation
, as following:

The final step is to solve for
:

9514 1404 393
Answer:
(W, T, L, S) = (3, 2, 1, 4.1)
Step-by-step explanation:
For some number of wins (W), ties (T), and losses (L), the player's score will be ...
score = 2.2W +0.25T -3L
For 3 wins, 2 ties, and 1 loss, the player's score is ...
2.2(3) +0.25(2) -3(1) = 6.6 +0.5 -3 = 4.1
We want to determine the domain of

any function of the form

is called an "exponential function",
the only condition is that b is positive and different from 1, and a is a nonzero real number.
The domain of such functions is all real numbers.
That is for any x, the expression <span>3(2^-x) "makes sense".
Answer: </span><span>The domain is all real numbers</span>