Answer: Positive effects: mass production of fertilizers, alkaline cleansers, refrigerant gas, dyes, explosives
Negative effects: heath problems, negative effects on soil organisms and soil organic matter, imbalances to the nitrogen cycle, high fossil fuel energy inputs, production of deadly weapons
Explanation:
The Haber process (also called Haber Bosch process) is used to produce ammonia from nitrogen and hydrogen under the high pressure. Basically, it's an artificial nitrogen fixation process. This method has both positive and negative effects on modern society.
Positive sides: ammonia is mainly used for mass production of fertilizer, which allows more food for everyone. It can be used for production of alkaline cleansers, refrigerant gas, dyes and explosives. Ammonia is also used in production of synthetic polymers, due to its role in the manufacturing of cyanide.
Negative sides: ammonia is a toxic gas, it can irritate eyes and lungs. Because of that, the excess nitrogen in soil and water coming from synthetic fertilizers can cause health problems. It is harmful for humans and animals, but it can also be harmful for plants. Environmental factors are also important. Because of the mass fixation, there is imbalance in the earth’s nitrogen cycle. Also, fossil fuels are used as a source of power for machinery in Haber's process, which increases emissions into the atmosphere. And, at least ammonia is a major component of weapons including great number of bombs.
Refraction is the bending of light (it also happens with sound, water and other waves) as it passes from one transparent substance into another. This bending by refraction makes it possible for us to have lenses, magnifying glasses, prisms and rainbows. Even our eyes depend upon this bending of light. Hope this helps!
<u>Answer:</u> The molar solubility of
is 
<u>Explanation:</u>
Solubility is defined as the maximum amount of solute that can be dissolved in a solvent at equilibrium.
Solubility product is defined as the product of concentration of ions present in a solution each raised to the power its stoichiometric ratio.
The balanced equilibrium reaction for the ionization of calcium fluoride follows:

s 2s
The expression for solubility constant for this reaction will be:
![K_{sp}=[Pb^{2+}][I^-]^2](https://tex.z-dn.net/?f=K_%7Bsp%7D%3D%5BPb%5E%7B2%2B%7D%5D%5BI%5E-%5D%5E2)
We are given:

Putting values in above equation, we get:

Hence, the molar solubility of
is 
Answer:
See Explanation
Explanation:
The question is incomplete; as the mixtures are not given.
However, I'll give a general explanation on how to go about it and I'll also give an example.
The percentage of a component in a mixture is calculated as:

Where
E = Amount of element/component
T = Amount of all elements/components
Take for instance:
In 
The amount of all elements is: (i.e formula mass of
)



The amount of calcium is: (i.e formula mass of calcium)



So, the percentage component of calcium is:




The amount of hydrogen is:



So, the percentage component of hydrogen is:




Similarly, for oxygen:
The amount of oxygen is:



So, the percentage component of oxygen is:




I believe the answer would be Neutrons