We have to know final temperature of the gas after it has done 2.40 X 10³ Joule of work.
The final temperature is: 75.11 °C.
The work done at constant pressure, W=nR(T₂-T₁)
n= number of moles of gases=6 (Given), R=Molar gas constant, T₂= Final temperature in Kelvin, T₁= Initial temperature in Kelvin =27°C or 300 K (Given).
W=2.4 × 10³ Joule (Given)
From the expression,
(T₂-T₁)=
(T₂-T₁)= 
(T₂-T₁)= 48.11
T₂=300+48.11=348.11 K= 75.11 °C
Final temperature is 75.11 °C.
Anything carbon in composition
Answer:
0.271 M NO₃⁻
Explanation:
To find the molarity of the nitrate ion (NO₃⁻), you need to (1) convert grams to moles (via molar mass), then (2) convert moles Al(NO₃)₃ to moles NO₃⁻, then (3) convert mL to L, and then (4) calculate the molarity. When (Al(NO₃)₃) dissolves in water, it dissociates into 3 nitrate ions. The final answer should have 3 sig figs.
(Steps 1 + 2)
Molar Mass (Al(NO₃)₃): 26.982 g/mol + 3(14.007 g/mol) + 9(15.998 g/mol)
Molar Mass (Al(NO₃)₃): 212.985 g/mol
1 Al(NO₃)₃ = 1 Al³⁺ and 3 NO₃⁻
6.25 g Al(NO₃)₃ 1 mole 3 moles NO₃⁻
------------------------- x ----------------- x ----------------------- = 0.0880 moles NO₃⁻
212.985 g 1 mole Al(NO₃)₃
(Steps 3 + 4)
325.0 mL / 1,000 = 0.3250 L
Molarity = moles / volume
Molarity = 0.0880 moles / 0.3250 L
Molarity = 0.271 M
The acceleration of the ball was 0.6 m·s⁻².
<em>F = ma</em>
<em>a = F</em>/<em>m</em> = 5 N/9 kg × (1 kg·m·s⁻²/1 N) = 0.6 m·s⁻²
1.A two face mixture is a type of mixture in which the components of the mixture are in different states of matter. A good example of a two face mixture is carbonated soft drink. Carbonated soft drink is a mixture of carbon dioxide [which is a gas] and water [which is a liquid]. Another example of a two face mixture is the the mixture of iodine and sodium solution.
2. To separate the mixture of iodine and sodium solution the best separation method to use is sublimation.
Sublimation process is used to separate mixtures in which one of the component of the mixture can translate from the solid state to the gaseous state without passing through the liquid state. An example of a solid which can sublime is iodine.
The sublimation process involves heating the mixture. On heating, the sublime solid will turn to vapour and escape from the mixture leaving behind the other component. The sublime component will be regained when it cools down.