Answer:
Step-by-step explanation:
r = 9.1 m
SA =3πr²

Answer:


Step-by-step explanation:
Given


Required
Determine the volume of the solid generated
Using the disk method approach, we have:

Where


So:

Where
So:
Apply the following half angle trigonometry identity;
![\cos^2(x) = \frac{1}{2}[1 + \cos(2x)]](https://tex.z-dn.net/?f=%5Ccos%5E2%28x%29%20%3D%20%5Cfrac%7B1%7D%7B2%7D%5B1%20%2B%20%5Ccos%282x%29%5D)
So, we have:
![\cos^2(2x) = \frac{1}{2}[1 + \cos(2*2x)]](https://tex.z-dn.net/?f=%5Ccos%5E2%282x%29%20%3D%20%5Cfrac%7B1%7D%7B2%7D%5B1%20%2B%20%5Ccos%282%2A2x%29%5D)
Open bracket

So, we have:
![V = \pi \int\limits^{\frac{\pi}{4}}_0 {[\frac{1}{2} + \frac{1}{2}\cos(4x)]} \, dx](https://tex.z-dn.net/?f=V%20%3D%20%5Cpi%20%5Cint%5Climits%5E%7B%5Cfrac%7B%5Cpi%7D%7B4%7D%7D_0%20%7B%5B%5Cfrac%7B1%7D%7B2%7D%20%2B%20%5Cfrac%7B1%7D%7B2%7D%5Ccos%284x%29%5D%7D%20%5C%2C%20dx)
Integrate
![V = \pi [\frac{x}{2} + \frac{1}{8}\sin(4x)]\limits^{\frac{\pi}{4}}_0](https://tex.z-dn.net/?f=V%20%3D%20%5Cpi%20%5B%5Cfrac%7Bx%7D%7B2%7D%20%2B%20%5Cfrac%7B1%7D%7B8%7D%5Csin%284x%29%5D%5Climits%5E%7B%5Cfrac%7B%5Cpi%7D%7B4%7D%7D_0)
Expand
![V = \pi ([\frac{\frac{\pi}{4}}{2} + \frac{1}{8}\sin(4*\frac{\pi}{4})] - [\frac{0}{2} + \frac{1}{8}\sin(4*0)])](https://tex.z-dn.net/?f=V%20%3D%20%5Cpi%20%28%5B%5Cfrac%7B%5Cfrac%7B%5Cpi%7D%7B4%7D%7D%7B2%7D%20%2B%20%5Cfrac%7B1%7D%7B8%7D%5Csin%284%2A%5Cfrac%7B%5Cpi%7D%7B4%7D%29%5D%20-%20%5B%5Cfrac%7B0%7D%7B2%7D%20%2B%20%5Cfrac%7B1%7D%7B8%7D%5Csin%284%2A0%29%5D%29)
So:
or

Answer:
0
Step-by-step explanation:
solve with y2-y1 / x2-x1
5-5 is 0
-1-3 is -4
0/4 is 0
slope is 0
Answer:
Q1 = 61
Q3 = 63
Step-by-step explanation:
From the plot attached :
Data obtained is :
Temperature frequency
59 0
60 2
61 3
62 3
63 4
64 2
65 1
Frequency Total 15
Data in raw format :
60,60,61,61,61,62,62,62,63,63,63,63,64,64,65
The first quartile :
Q1 = 1/4(n+1)th term
n = 15
Q1 = 1/4(15+1)th term
Q1 = 1/4 * 16th
Q1 = 4th term
Q1 = 61
Third quartile (Q3):
Q3 = 3/4(n+1)th term
n = 15
Q3 = 3/4(15+1)th term
Q3 = 3/4 * 16th
Q3 = (48/4)th term
Q3 = 12th term
Q3 = 63
For the midpoint, you find the differences in x values and y values then divide them by 2. Like so:
Let's do x first:
(-16-0)/2 = (-16)/2 = -8
So our x coordinate is -8.
Now Y:
(-16)/2 = -8
So our Y coordinate is -8 as well.
So your answer is:
(-8,-8)