The sum of the sum notation ∞Σn=1 2(1/5)^n-1 is S= 5/2
<h3>How to determine the sum of the notation?</h3>
The sum notation is given as:
∞Σn=1 2(1/5)^n-1
The above notation is a geometric sequence with the following parameters
- Initial value, a = 2
- Common ratio, r = 1/5
The sum is then calculated as
S = a/(1 - r)
The equation becomes
S = 2/(1 - 1/5)
Evaluate the difference
S = 2/(4/5)
Express the equation as products
S = 2 * 5/4
Solve the expression
S= 5/2
Hence, the sum of the sum notation ∞Σn=1 2(1/5)^n-1 is S= 5/2
Read more about sum notation at
brainly.com/question/542712
#SPJ1
Answer:
The slope is 1.
Step-by-step explanation:
Remember:

Let's plug in!

If the negative square root is found to be one of your solutions, then that is indicative of a pair of imaginary roots (the imaginary i). According to the conjugate rule, if you have one solution that is imaginary, you will have another but with the opposite sign. For example, if a solution to a quadratic is found to be 2 - i, then its conjugate, 2 + i is also a solution. They will ALWAYS go in pairs. Same thing with radical solutions. If one solution is found to be 
then
will also be a solution.
X^3 = 216
by taking cubic root for both sides
![\sqrt[3]{x^3} = \sqrt[3]{216}](https://tex.z-dn.net/?f=%20%5Csqrt%5B3%5D%7Bx%5E3%7D%20%3D%20%20%5Csqrt%5B3%5D%7B216%7D%20)
x = 6
Answer:
-3/-2
Step-by-step explanation:
because (x,y) the x coordinate is -3 and the y coordinate is -2