Answer:
228 cookies wil be rejected in a 5,000 count batch of cookies.
Step-by-step explanation:
Problems of normally distributed samples can be solved using the z-score formula.
In a set with mean
and standard deviation
, the zscore of a measure X is given by:

The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the pvalue, we get the probability that the value of the measure is greater than X.
In this question:

Proportion of rejected cookies.
Less than 39:
pvalue of Z when X = 39.



has a pvalue of 0.0228.
More than 45:
1 subtracted by the pvalue of Z when X = 45.



has a pvalue of 0.9772
1 - 0.9772 = 0.0228
Total:
2*0.0228 = 0.0456
How many cookies wil be rejected in a 5,000 count batch of cookies?
The proportion of cookies rejected is 0.0456. Out of 5000:
0.0456*5000 = 228
228 cookies wil be rejected in a 5,000 count batch of cookies.
Answer:
Step-by-step explanation:
Given that Z is a standard normal variate.
We are to calculate the probabilities as given
F(z) represents the cumulative probability i.e. P(Z<z)
a. P(z ≤ −1)
=F(-1)
= 0.158655
b. P(z > .95)
= 1-F(0.95)
= 0.1711
c. P(z ≥ −1.5)
= 1-F(-1.5)
= 0.9332
d. P(−.5 ≤ z ≤ 1.75)
=F(1.75)-F(-0.5)
= 0.6514
e. P(1 < z ≤ 3)
=F(3)-F(1)
=0.1573
Answer:
30
Step-by-step explanation:
2x-24 = 68 2x = 92 so x = 46. Sarah is 22 and her mum is 46.