Answer:



Step-by-step explanation:
<u>Optimizing With Derivatives
</u>
The procedure to optimize a function (find its maximum or minimum) consists in
:
- Produce a function which depends on only one variable
- Compute the first derivative and set it equal to 0
- Find the values for the variable, called critical points
- Compute the second derivative
- Evaluate the second derivative in the critical points. If it results positive, the critical point is a minimum, if it's negative, the critical point is a maximum
We know a cylinder has a volume of 4
. The volume of a cylinder is given by

Equating it to 4

Let's solve for h

A cylinder with an open-top has only one circle as the shape of the lid and has a lateral area computed as a rectangle of height h and base equal to the length of a circle. Thus, the total area of the material to make the cylinder is

Replacing the formula of h

Simplifying

We have the function of the area in terms of one variable. Now we compute the first derivative and equal it to zero

Rearranging

Solving for r

![\displaystyle r=\sqrt[3]{\frac{4}{\pi }}\approx 1.084\ feet](https://tex.z-dn.net/?f=%5Cdisplaystyle%20r%3D%5Csqrt%5B3%5D%7B%5Cfrac%7B4%7D%7B%5Cpi%20%7D%7D%5Capprox%201.084%5C%20feet)
Computing h

We can see the height and the radius are of the same size. We check if the critical point is a maximum or a minimum by computing the second derivative

We can see it will be always positive regardless of the value of r (assumed positive too), so the critical point is a minimum.
The minimum area is


Answer:
The second time when Luiza reaches a height of 1.2 m = 2 08 s
Step-by-step explanation:
Complete Question
Luiza is jumping on a trampoline. Ht models her distance above the ground (in m) t seconds after she starts jumping. Here, the angle is entered in radians.
H(t) = -0.6 cos (2pi/2.5)t + 1.5.
What is the second time when Luiza reaches a height of 1.2 m? Round your final answer to the nearest hundredth of a second.
Solution
Luiza is jumping on trampolines and her height above the levelled ground at any time, t, is given as
H(t) = -0.6cos(2π/2.5)t + 1.5
What is t when H = 1.2 m
1.2 = -0.6cos(2π/2.5)t + 1.5
0.6cos(2π/2.5)t = 1.2 - 1.5 = -0.3
Cos (2π/2.5)t = (0.3/0.6) = 0.5
Note that in radians,
Cos (π/3) = 0.5
This is the first time, the second time that cos θ = 0.5 is in the fourth quadrant,
Cos (5π/3) = 0.5
So,
Cos (2π/2.5)t = Cos (5π/3)
(2π/2.5)t = (5π/3)
(2/2.5) × t = (5/3)
t = (5/3) × (2.5/2) = 2.0833333 = 2.08 s to the neareast hundredth of a second.
Hope this Helps!!!
Answer:
Multiply it by 100%
Step-by-step explanation:
1/2 = 1/2×100% = (1/2×100)% = 50% . . . . . for example
_____
Equivalently, express the ratio with 100 as the denominator.
... 1/2 × 50/50 = 50/100 = 50%
_____
It can be useful to think of "%" as a shorthand way to write "/100".
Answer:
C) 21 ft x 36 ft
Step-by-step explanation:
Because 7 * 3 = 21 ft & 12 * 3 = 36 ft