Answer:
4 tonne/m³
Explanation:
ρ = m / V
ρ = 49 g / (π (17.4 mm / 2)² (50.3 mm))
ρ = 0.0041 g/mm³
Converting to tonnes/m³:
ρ = 0.0041 g/mm³ (1 kg / 1000 g) (1 tonne / 1000 kg) (1000 mm / m)³
ρ = 4.1 tonne/m³
Rounding to one significant figure, the density is 4 tonne/m³.
Answer:
<em>The force of kinetic friction between Kiera and the floor is 9.24 N</em>
Explanation:
<u>Friction Force</u>
When an object is moving and encounters friction in rough surfaces, it loses acceleration and/or velocity because the friction force opposes motion.
The friction force when an object is moving on a horizontal surface is calculated by:

Where μ is the coefficient of static or kinetics friction and N is the normal force.
If no forces other then the weight and the normal are acting upon the y-direction, then the weight and the normal are equal in magnitude:
N = W
Thus, the friction force is:

Kiera, the W=330 N girl steps in water that has a coefficient of friction of μ=0.028 with the floor.
The kinetic friction force is:
Fr = 0.028*330
Fr = 9.24 N
The force of kinetic friction between Kiera and the floor is 9.24 N
Answer:
72 volts.
Explanation:
To solve this, we have to use the Ohm's law.
The ohm's law tells us that the voltage drop of a resistor is directly proportional to the current applied to the conductor.

in this case the current is 1.8 amps and the resistor is 40 ohm

so
.
First harmonic of a closed pipe is determined as velocity, v, to four times length (4L), F₀ v/4L.
<h3>
First harmonic of a closed pipe</h3>
The first harmonic of a closed pipe is the fundamental frequency of the closed of the closed pipe.
L = λ/4
where;
- L is the length of the pipe
- λ is the wavelength of sound
λ = 4L
But, v = F₀λ
v = F₀(4L)
F₀ = v/4L
where;
- F₀ is the first harmonic
- v is speed of sound
Thus, first harmonic of a closed pipe is determined as velocity, v, to four times length (4L), F₀ v/4L.
Learn more about fundamental frequency here: brainly.com/question/1967686
#SPJ11
<h3 />
Kinetic of automobile
Mass m = 1,250 Kg; V = 11 m/s
Formula: K.E = 1/2 mV²
K.E = 1/2(1,250 Kg)(11 m/s)²
K.E = 75,625 J
Speed required for insect to have the same kinetic energy as automobile
Mass of insect = 0.72 g convert to Kg m = 7.2 x 10⁻⁴ Kg
K.E = 1/2 mV² Derive V =?
V = 2 K.E/m
V = √2(75,625 J)/7.2 x 10⁻4 Kg
V = √2.1 x 10⁸ m²/s²
V = 14,491.34 m/s (velocity of insect)