Answer:
The velocity of the ball before it hits the ground is 381.2 m/s
Explanation:
Given;
time taken to reach the ground, t = 38.9 s
The height of fall is given by;
h = ¹/₂gt²
h = ¹/₂(9.8)(38.9)²
h = 7414.73 m
The velocity of the ball before it hits the ground is given as;
v² = u² + 2gh
where;
u is the initial velocity of the on the root = 0
v is the final velocity of the ball before it hits the ground
v² = 2gh
v = √2gh
v = √(2 x 9.8 x 7414.73 )
v = 381.2 m/s
Therefore, the velocity of the ball before it hits the ground is 381.2 m/s
For simplicity, let's call vector B-A vector C Then C is
Cx = (-6.1 - 2.2)
Cy = (-2.2 - (-6.9)) Or,
Cx = -8.3 Cy = 4.7
The magnitude is found with the Pythagorean theorem
||C|| = √(-8.3² + 4.7²) = 9.538
Answer:
Wavelength.
Explanation:
1 period, or wavelength, is measured from one crest to another or from one trough to another.
Ideal gas law:
PV = nRT
P = pressure, V = volume, n = # of moles, R = gas constant, T = temperature
Equipartition theorem:
Each degree of freedom that a molecule has adds 0.5kT to its total internal energy where k = Boltzmann's constant and T = temperature
2nd law of thermodynamics:
A set of governing principles that restrict the direction of net heat flow (always hot to cold, heat engines are never 100% efficient, entropy always tends to increase, etc)
Clearly the answer is Choice A
the answer is C because the air balloon is going down meaning that negative