Answer:
The rate of the boat in still water is 44 mph and the rate of the current is 4 mph
Explanation:
x = the rate of the boat in still water
y = the rate of the current.
Distance travelled = 120 mi
Time taken upstream = 3 hr
Time taken downstream = 2.5 hr
Speed = Distance / Time
Speed upstream

Speed downstream

Adding both the equations


The rate of the boat in still water is <u>44 mph</u> and the rate of the current is <u>4 mph</u>
Answer:
33.6 m
Explanation:
Given:
v₀ = 0 m/s
a = 47.41 m/s²
t = 1.19 s
Find: Δx
Δx = v₀ t + ½ at²
Δx = (0 m/s) (1.19 s) + ½ (47.41 m/s²) (1.19 s)²
Δx = 33.6 m
Answer:
-3 m
Explanation:
Displacement is the final position minus the initial position.
Δx = x − x₀
Δx = -3 m − 0 m
Δx = -3 m
Answer: the father of the nuclear physics is Ernest Rutherford
Explanation:
Explanation:
It is given that,
Mas of the car, 
Initial speed of the car, 
Mass of the truck, 
Initial speed of the car, 
Final speed of the car, 
(a) It is a case of elastic collision. Let
is the final velocity of the truck right after the collision. Using the conservation of linear momentum to find it :



(b) Initial kinetic energy is given by :



Final kinetic energy is given by :



The change in mechanical energy of the car truck system in the collision:



The loss in kinetic energy is 10029.39 Joules.
(c) The change in mechanical energy gets changed energy gets changed in the form of heat and light.
Hence, this is the required solution.